Skip to main content
×
×
Home

Improved definition of faults in the Groningen field using seismic attributes

  • Marloes Kortekaas (a1) and Bastiaan Jaarsma (a1)
Abstract

The Groningen field is the largest onshore gas field in Europe. The gas-bearing section comprises aeolian and fluvial Rotliegend sandstones of Permian age and fluvial sandstones of Carboniferous age. Continuous production since 1963 has led to induced seismicity starting in the early 1990s.

Faults at reservoir level play a major role in the seismicity in the Groningen field. Fault slip is expected when shear traction is sufficient to overcome frictional resistance on the fault surface. Clear insights into which faults and fault segments are most susceptible to seismicity could be used to optimise production and minimise the seismic risk. To gain these insights, a detailed and realistic fault model is required as input to both statistical analyses on seismicity and deterministic geomechanical modelling of seismogenic behaviour along fault planes. Geometrical seismic attributes and, subsequently, fault planes were extracted from a reprocessed and depth-imaged 3D seismic volume. This resulted in a detailed visualisation of the faults at reservoir level, with extension into the deeper strata below the reservoir in many cases. They represent fault planes with realistic dimensions and shapes. The fault map based on seismic attributes suggests the presence of faults that have not been included in studies on Groningen seismicity before. The improved fault definition correlates with recent earthquake hypocentres. We conclude that a detailed fault model of the Groningen field can be created using 3D seismic attributes and that detailed 3D fault planes can be extracted from these attributes. The results can be used as input to statistical and geomechanical analyses on seismicity.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Improved definition of faults in the Groningen field using seismic attributes
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Improved definition of faults in the Groningen field using seismic attributes
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Improved definition of faults in the Groningen field using seismic attributes
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
*Corresponding author. Email: marloes.kortekaas@ebn.nl
References
Hide All
Bourne, S.J. & Oates, S.J., 2015a. An activity rate model of induced seismicity within the Groningen Field (Part 1). NAM report. Available at https://nam-feitenencijfers.data-app.nl/download/rapport/8b6f2ff1-b98e-4148-a1db-bf06881579e5?open=true.
Bourne, S.J. & Oates, S.J., 2015b. An activity rate model of induced seismicity within the Groningen Field (Part 2). NAM report. Available at https://nam-feitenencijfers.data-app.nl/download/rapport/c906565b-6b54-4768-874b-b23b46b1ee5e?open=true.
Bourne, S.J., Oates, S.J., van Elk, J. & Doornhof, D. 2014. A seismological model for earthquakes induced by fluid extraction from a subsurface reservoir. Journal of Geophysical Research: Solid Earth 119, 89919015.
Chopra, S. & Marfurt, K.J., 2008. Emerging and future trends in seismic attributes. The Leading Edge 27:, 298318.
Daber, R. & Aqrawi, A. (eds), 2011. Petrel 2010: interpreter's guide to seismic attributes. Schlumberger (Houston, TX).
de Jager, J. & Visser, C., 2017. Geology of the Groningen field – an overview. Netherlands Journal of Geosciences / Geologie en Mijnbouw, this issue.
Dost, B. & Kraaijpoel, D., 2013. The August 16, 2012 earthquake near Huizinge (Groningen). KNMI publication. Royal Netherlands Meteorological Institute (De Bilt): 26 pp. Available at www.knmi.nl (http://bibliotheek.knmi.nl/knmipubDIV/The_August16_2012_earthquake_near_Huizinge_(Groningen).pdf).
Dost, B., Goutbeek, F., van Eck, T. & Kraaijpoel, D., 2012. Monitoring induced seismicity in the North of the Netherlands: status report 2010. KNMI scientific report WR 2012-03. Royal Netherlands Meteorological Institute (De Bilt).
Gerling, P., Geluk, M.C., Kockel, F., Lokhorst, A., Lott, G.K. & Nicholson, R.A., 1999. ‘NW European Gas Atlas’ – new implications for the Carboniferous gas plays in the western part of the Southern Permian Basin. In: Fleet, A.J. & Boldy, S.A.R. (eds): Petroleum Geology of Northwest Europe: Proceedings of the 5th Conference. Geological Society of London (London): 799–808.
Grötsch, J., Sluijk, A., van Ojik, K., de Keijzer, M., Graaf, J. & Steenbrink, J., 2011. The Groningen gas field: fifty years of exploration and gas production from a Permian dryland reservoir. In: The Permian Rotliegend of the Netherlands. SEPM Special Publication No. 98. Society for Sedimentary Geology (Tulsa, OK): 1133.
Hettema, M.H.H., Jaarsma, B., Schroot, B.M. & van Yperen, G.C.N., 2017. An empirical relationship for the seismic activity rate of the Groningen gas field. Netherlands Journal of Geosciences / Geologie en Mijnbouw, this issue.
Hoornveld, N., 2013. Dinantian carbonate development and related prospectivity of the onshore Northern Netherlands. MSc Thesis. Vrije Universiteit Amsterdam (Amsterdam): 142 pp.
Knipe, R.J., Jones, G. & Fisher, Q.J., 1998. Faulting, fault sealing and fluid flow in hydrocarbon reservoirs: an introduction. In: Jones, G., Fisher, Q.J. & Knipe, R.J. (eds): Faulting, fault sealing and fluid flow in hydrocarbon reservoirs. Geological Society of London, Special Publication 147: vii–xxi.
KNMI, 2017. www.knmi.nl (Royal Netherlands Meteorological Institute, website from KNMI). Data downloaded on 1 January 2017.
Kombrink, H., 2008. The Carboniferous of the Netherlands and surrounding areas; a basin analysis. PhD Thesis. Utrecht University (Utrecht): 184 pp.
Langemeijer, J., 2017. Estimation of an effective velocity model for the Carboniferous below NE-Netherlands. MSc Thesis. Utrecht University (Utrecht).
Ligtenberg, H., Okkerman, J. & de Keijzer, M., 2011. Fractures in the Dutch Rotliegend – an overview. In: The Permian Rotliegend of the Netherlands. SEPM Special Publication No. 98. Society for Sedimentary Geology (Tulsa, OK): 229244.
NAM, 2015. Hazard and risk assessment for induced seismicity in Groningen. Interim update November 2015. EP201511200172. Nederlandse Aardolie Maatschappij (Assen). www.sodm.nl.
NAM, 2016a. Technical addendum to the Winningsplan Groningen 2016 – Production, Subsidence, Induced Earthquakes and Seismic Hazard and Risk Assessment in the Groningen Field, PART I – Summary and Production, Nederlandse Aardolie Maatschappij BV (van Elk, Jan and Doornhof, Dirk, eds). Nederlandse Aardolie Maatschappij (Assen). Available at https://nam-feitenencijfers.data-app.nl/download/rapport/9fd11c35-6260-482f-a6d2-8b1ff78e8af8?open=true.
NAM, 2016b. Report on Mmax expert workshop, 8–10 March 2016. Nederlandse Aardolie Maatschappij (Assen). Available at https://nam-feitenencijfers.data-app.nl/download/rapport/cef44262-323a-4a34-afa8-24a5afa521d5?open=true.
NAM, 2016c. Gaswinning Groningen – Meet- en Regelprotocol Aardbevingen. Nederlandse Aardolie Maatschappij (Assen). Available at https://nam-feitenencijfers.data-app.nl/download/rapport/d058891e-f243-4c8b-9dce-8cc19ea71132?open=true.
Nepveu, M., Van Thienen-Visser, K. & Sijacic, D., 2016. Statistics of seismic events at the Groningen field. Bulletin of Earthquake Engineering 14: 33433362.
Pedersen, S.I., Randen, T., Sønneland, L. & Øyvind, S., 2002. Automatic fault extraction using artificial ants. SEG International Exposition and 72nd Annual Meeting, Salt Lake City, Utah, USA. Society of Exploration Geophysics.
Schroot, B.M. & de Haan, H.B., 2003. An improved regional structural model of the Upper Carboniferous of the Cleaver Bank High based on 3D seismic interpretation. In: Nieuwland, D.A. (ed.): New insights into structural interpretation and modelling. Geological Society of London, Special Publication No. 212: 2337.
Spetzler, J. & Dost, B., 2017. Hypocenter estimation of induced earthquakes in Groningen. Geophysical Journal International 209 (1): 453465.
TNO, 2013. Toetsing van de bodemdalingsprognoses en seismische hazard ten gevolge van gaswinning van het Groningen veld. TNO 2013 R11953 (23 December). TNO (Utrecht). Available at www.nlog.nl/node/536.
Van Bemmel, P. & Pepper, R.E.F., 2000. Seismic signal processing method and apparatus for generating a cube of variance values, US Patent Number 6.151.555. Available at http://patents.justia.com/patent/6151555.
Van Hulten, F.F.N., 2012. Devono-carboniferous carbonate platform systems of the Netherlands. Geologica Belgica 15: 284296.
Van Thienen-Visser, K. & Breunese, J.N., 2015. Induced seismicity of the Groningen gas field: history and recent developments. The Leading Edge 34: 664671.
Wentinck, H.M., 2015. Induced seismicity in the Groningen field – a statistical assessment of tremors along faults in a compacting reservoir. Shell report. Shell (The Hague).
Wentinck, H.M., 2017. Kinematic modelling of large tremors in the Groningen field using extended seismic sources – first results related to the Huizinge 2012 tremor. NAM report. Nederlandse Aardolie Maatschappij (Assen).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Netherlands Journal of Geosciences
  • ISSN: 0016-7746
  • EISSN: 1573-9708
  • URL: /core/journals/netherlands-journal-of-geosciences
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 90
Total number of PDF views: 351 *
Loading metrics...

Abstract views

Total abstract views: 228 *
Loading metrics...

* Views captured on Cambridge Core between 17th January 2018 - 17th August 2018. This data will be updated every 24 hours.