Skip to main content

Late Pleistocene variations of the background aeolian dust concentration in the Carpathian Basin: an estimate using decomposition of grain-size distribution curves of loess deposits

  • G. Varga (a1), J. Kovács (a2) (a3) and G. Újvári (a4)

Aeolian dust deposits can be considered as one of the most important archives of past climatic changes. Alternating loess and paleosol strata display variations of the dust load in the Pleistocene atmosphere. By using the observations of recent dust storms, we are able to employ Late Pleistocene stratigraphic datasets (with accurate chronological framework) and detailed granulometric data for making conclusions on the atmospheric dust load in the past. Age-depths models, created from the absolute age data and stratigraphic interpretation, allow us to calculate sedimentation rates and dust fluxes, while grain-size specifies the dry-deposition velocity, i.e. the atmospheric residence time of mineral particles. Thus, the dust concentration can be expressed as the quotient of the dust flux and gravitational settling velocity. Recent observations helped to clarify the mechanisms behind aeolian sedimentation and the physical background of this process has nowadays been well established. Based on these two, main contrasting sedimentary modes of dust transport and deposition can be recognised: the short suspension episodes of the coarse (silt and very fine sand) fraction and the long-range transport of a fine (clay and fine silt) component. Using parametric curve fitting the basic statistical properties of these two sediment populations can be revealed for Pleistocene aeolian dust deposits, as it has been done for loess in Hungary. As we do not have adequate information on the magnitude and frequency of the Pleistocene dust storms, conclusions could only be made on the magnitude of continuous background dust load. The dust concentration can be set in the range between 1100 and 2750 μg/m3. These values are mostly higher than modern dust concentrations, even in arid regions. Another interesting proxy of past atmospheric conditions could be the visibility, being proportional to the dust concentration. According to the known empirical dust concentration – visibility equations, its value is around 6.5 to 26 kilometres.

Corresponding author
Hide All
Antoine, P., Rousseau, D.D., Fuchs, M., Hatté, C., Gauthier, C., Marković, S.B., Jovanović, M., Gaudenyi, T., Moine, O. & Rossignol, J., 2009. High-resolution record of the last climatic cycle in the southern Carpathian Basin (Surduk, Vojvodina, Serbia). Quaternary International 198: 1936.
Bokhorst, M.P., Beets, C.J., Markovic, S.B., Gerasimenko, N.P., Matviishina, Z.N. & Frechen, M., 2009. Pedo-chemical climate proxies in Late Pleistocene Serbian-Ukranian loess sequences. Quaternary International 198: 113123.
Bokhorst, M.P., Vandenberghe, J., Sümegi, P., Lanczont, M., Gerasimenko, N.P., Matviishina, Z.N., Markovic, S.B. & Frechen, M., 2011. Atmospheric circulation patterns in central and eastern Europe during the Weichselian Pleniglacial inferred from loess grain-size records. Quaternary International 234: 6274.
Buggle, B., Glaser, B., Zöller, L., Hambach, U., Markovic, S., Glaser, I. & Gerasimenko, N., 2008. Geochemical characterisation and origin of south-eastern and eastern European loesses. Quaternary Science Reviews 27: 10581075.
Buggle, B., Hambach, U., Glaser, B., Gerasimenko, N., Marković, S.B., Glaser, I. & Zöller, L., 2009. Stratigraphy, and spatial and temporal paleoclimatic trends in Southeastern/Eastern European loess-paleosol sequences. Quaternary International 196: 86106.
Chepil, W.S. & Woodruff, N.P., 1957. Sedimentary characteristics of dust storms – visibility and dust concentration. American Journal of Science 255: 104114.
Dobosi, V., 1967. Új felső-paleolit telep az Alföldön. (New Upper Paleolithic settlement on the Great Hungarian Plain). Archeológiai Értesíto 94: 184193.
EPICA community members, 2004. Eight glacial cycles from an Antarctic ice core. Nature 429: 623628.
Frechen, M., Horvath, E. & Gabris, G., 1997. Geochronology of middle and upper Pleistocene loess sections in Hungary. Quaternary Research 48: 291312.
Gábori-Csánk, V., 1960. A ságvári telep abszolút kormeghatározása. (Absolute age determination of the settlement at Ságvár). Archeológiai Értesítő 87: 125129.
Gábris, Gy., 2007. The relation between the time scale of the Quaternary surface processes and oxygen isotope stratigraphy according to the loess-palaeosoil sequences and river terraces in Hungary. Földtani Közlöny 137: 515540.
Galović, L., Frechen, M., Halamić, J., Durn, G. & Romić, M., 2009. Loess chronostratigraphy in Eastern Croatia – A luminescence dating approach. Quaternary International 198: 8597.
Ganor, E. & Foner, H.A., 2001. Mineral dust concentrations, deposition fluxes and deposition velocities in dust episodes over Israel. Journal of Geophysical Research. Atmospheres 106 (D16): 1843118438.
Geyh, M.A., Schweitzer, F., Vértes, L. & Vogel, I.C., 1969. A magyarorszagi würmi eljegesedés új kronológiai adatai. (New chronological data of the Weichselian glaciation in Hungary). Földrajzi Közlemények 18: 518.
Gillies, J.A., Nickling, W.G. & McTainsh, G.H., 1996. Dust concentration and particle-size characteristics of an intense dust haze event: Inland Delta Region, Mali, West Africa. Atmospheric Environment 30: 10811090.
Harrison, S.P., Kohfeld, K.E., Roelandt, C. & Claquin, T., 2001. The role of dust in climate changes today, at the last glacial maximum and in the future. Earth-Science Reviews 54: 4380.
Hupuczi, J., Lócskai, T., Hum, L. & Sümegi, P., 2006. Heinrich események kimutatása hazai löszszelvény alapján. (The demonstration of Heinrich events in Hungarian loess profiles). Malakológiai Tájékoztató 24: 3134.
Hupuczi, J. & Sümegi, P., 2010. The Late Pleistocene paleoenvironment and paleoclimate of the Madaras section (south Hungary), based on preliminary records from mollusks. Central European Journal of Geosciences 2: 6470.
Jaenicke, R. & Schütz, L., 1978. Comprehensive study of physical and chemical properties of the surface aerosols in the Cape Verde Islands regions. Journal of Geophysical Research. Oceans and atmospheres 83: 35853599.
Jickells, T.D., An, Z., Andersen, K.K., Baker, A.R., Bergametti, G., Brooks, N., Junji, Cao, Boyd, P.W., Duce, R.A., Hunter, K.A., Kawahata, H., Kubilay, N., laRoche, J., Liss, P.S., Mahowald, N., Prospero, J.M., Ridgwell, A.J., Tegen, I. & Torres, R., 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308: 6771.
Kohfeld, K.E. & Tegen, I., 2007. Record of mineral aerosols and their role in the earth system. Treatise on Geochemistry 4: 126.
Konert, M. & Vandenberghe, J., 1997. Comparison of laser grain-size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology 44: 523535.
Koloszár, L. & Marsi, I., 2005. Formations of Late Neogene and Pleistocene terrestrial sediments in the region of Mórágy Hill (Hungary). Acta Geologica Hungarica 48: 317337.
Kovács, J., 2008. Grain-size analysis of the Neogene red clay formation in the Pannonian Basin. International Journal of Earth Sciences 97: 171178.
Kovács, J., Varga, Gy. & Dezső, J., 2008. Comparative study on the Late Cenozoic red clay deposits from China and Central Europe (Hungary). Geological Quarterly 52: 369382.
Krolopp, E. & Sümegi, P., 2002. A ságvári lösz-rétegsor csigafaunája. (The mollusc fauna of the Ságvár loess profile). Malakológiai Tájékoztató 20: 714.
Krolopp, E., Sümegi, P., Kuti, L., Hertelendi, E. & Kordos, L., 1996. Szeged környéki löszképzodmények keletkezésének paleoökológiai rekonstrukciója. (Palaeoecological reconstruction of the formation of loess deposits in the environs of Szeged). Földtani Közlöny 125: 309361.
Lisiecki, L. & Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic 18O records. Paleoceanography 20: PA1003, 17 p.
Lócskai, T., Hupuczi, J., Hum, L. & Sümegi, P., 2006. Dansgaard-Oeschger ciklusok kimutatása hazai löszszelvénybol. (The demonstration of Dansgaard-Oeshger cycles from Hungarian loess profiles). Malakológiai Tájékoztató 24: 3539.
Lun, I.Y.F & Lam, J.C., 2000. A study of Weibull parameters using long-term wind observations. Renewable Energy 20: 145153.
Mahowald, N. M., Muhs, D.R., Levis, S., Rasch, P.J., Yoshioka, M., Zender, C.S. & Luo, C., 2006. Change in atmospheric mineral aerosols in response to climate: Last glacial period, preindustrial, modern, and doubled carbon dioxide climates. Journal of Geophysical Research 111, D10202, 22 p.
Markovic, S.B., Kostic, N. & Oches, E.A., 2004. Paleosols in the Ruma loess section. Revista Mexicana de Ciencias Geológicas 21: 7987.
Markovic, S.B., McCoy, W.D., Oches, E.A., Savic, S., Gaudenyi, T., Jovanovic, M., Stevens, T., Walther, R., Ivanisevic, P. & Galic, Z., 2005. Paleoclimate record in the upper Pleistocene loess-palaeosol sequence at Petrovaradin brickyard (Vojvodina, Serbia). Geologica Carpathica 56: 545552.
Markovic, S.B., Oches, E.A., Sümegi, P., Jovanovic, M. & Gaudenyi, T., 2006. An introduction to the middle and upper Pleistocene loess-palaeosol sequence at Ruma brickyard, Vojvodina, Serbia. Quaternary International 149: 8086.
Markovic, S.B., Oches, E.A., McCoy, W.D., Frechen, M. & Gaudenyi, T., 2007. Malacological and sedimentological evidence for ‘warm’ glacial climate from the Irig loess sequence, Vojvodina, Serbia. Geochemistry Geophysics Geosystems 8: Q09008. 12 p.
Markovic, S.B., Bokhorst, M.P., Vandenberghe, J., McCoy, W.D., Oches, E.A., Hambach, U., Gaudenyi, T., Jovanovic, M., Stevens, T., Zöller, L. & Machalett, B., 2008. Late Pleistocene loess-palaeosol sequences in the Vojvodina region, North Serbia. Journal of Quaternary Science 23: 7384.
Markovic, S.B., Hambach, U., Catto, N., Jovanovic, M., Buggle, B., Machalett, B., Zöller, L., Glaser, B. & Frechen, M., 2009. The middle and late Pleistocene loess-palaeosol sequences at Batajanica, Vojvodina, Serbia. Quaternary International 198: 255266.
Marsi, I., Don, Gy., Földvári, M., Koloszár, L., Kovács-Pálffy, P., Krolopp, E., Lantos, M., Nagy-Bodor, E. & Zilahi-Sebess, L., 2004. Quaternary sediments of the northeastern Mórágy Block. Annual Report of the Geological Institute of Hungary for the Year 2003: 343359.
McTainsh, G.H. & Pitblado, J.R., 1987. Dust storms and related phenomena measured from meteorological records in Australia. Earth Surface Processes and Landforms 12: 415424.
McTainsh, G.H., Nickling, W.G. & Lynch, A.W., 1997. Dust deposition and particle size in Mali, West Africa. Catena 29: 307322.
McTainsh, G.H., Strong, C. & Leys, J., 2009. Wind erosion histories, model input data and community DustWatch. Atmospheric Environment Research Centre, Griffith University, Brisbane, 221 p.
Novothny, Á., Horváth, E. & Frechen, M., 2002. The loess profile at Albertirsa, Hungary – improvements in loess stratigraphy by luminescence dating. Quaternary International 95/96: 155163.
Novothny, Á., Frechen, M., Horváth, E., Bradák, B., Oches, E.A., McCoy, W.D. & Stevens, T., 2009. Luminescence and amino acid racemisation chronology of the loess-paleosol sequence at Sütto, Hungary. Quaternary International 198: 6276.
Oches, E.A. & McCoy, W.D., 1995. Aminostratigraphic evaluation of conflicting age estimates for the ‘Young Loess’ of Hungary. Quaternary Research 44: 160170.
Patterson, E.M. & Gillette, D.A., 1977. Measurements of visibility vs. mass concentration for airborne soil particles. Atmospheric Environments 10: 8396.
Peticzka, R., Holawe, F. & Riegler, D., 2010. Structural analyses on the modified paleosol-sequence of ‘Stillfried B’ with high resolution measurements of selected laboratory parameters. Quaternary International 222: 168177.
Pécsi, M., 1968. Loess. In: Fairbridge, R.W. (ed.): The Encyclopaedia of Geomorphology, Reinhold, New York: 674678.
Pécsi, M., 1979. Lithostratigraphical subdivision of the loess profiles at Paks. Acta Geologica Hungarica 22: 409418.
Pécsi, M., 1985. Chronostratigraphy of Hungarian loesses and underlying subaerial formation. In: Pécsi, M. (ed.): Loess and the Quaternary: Chinese and Hungarian Case Studies. Studies in Geography in Hungary 18: 3349.
Pécsi, M., 1990. Loess is not just the accumulation of dust. Quaternary International 7–8: 121.
Pécsi, M. & Pevzner, M.A., 1974. Paleomagnetic measurements in the loess sequences at Paks and Dunaföldvár, Hungary. Földrajzi Közlemények 22: 215224.
Pécsi, M. & Schweitzer, F., 1995. The lithostratigraphical, chronostratigraphical sequence of Hungarian loess profiles and their geomorphological position. In: Pécsi, M. & Schweitzer, F. (eds): Loess InForm 3. Concept of loess, loesspaleosol stratigraphy. MTA FKI, Budapest: 3161.
Pósfai, M. & Buseck, P.R., 2010. Nature and climate effects of individual tropospheric aerosol particles. Annual Review of Earth and Planetary Sciences 38: 1743.
Prins, M.A. & Vriend, M., 2007. Glacial and interglacial eolian dust dispersal patterns across the Chinese Loess Plateau inferred from decomposed loess grain-size records. Geochemistry, Geophysics, Geosystems 8: Q07Q05, 17 p.
Prins, M.A., Vriend, M., Nugteren, G., Vandenberghe, J., Lu, H., Zheng, H. & Weltje, G.J., 2007. Late Quaternary aeolian dust flux variability on the Chinese Loess Plateau: Inferences from unmixing of loess grain-size records. Quaternary Science Reviews 26: 230242.
Pye, K., 1987. Aeolian Dust and Dust Deposits. Academic Press, London: 334 p.
Pye, K., 1995. The nature, origin and accumulation of loess. Quaternary Science Reviews 14: 653667.
Querol, X., Alastuey, A., Rodríguez, S., Viana, M.M., Artíñano, B., Salvador, P., Mantilla, E., García do Santos, S., Fernandez Patier, R., de La Rosa, J., Sanchez de la Campa, A., Menéndez, M. & Gil, J.J., 2004. Levels of particulate matter in rural, urban and industrial sites in Spain. Science of the Total Environment 334-335: 359376.
Ridgwell, A.J., 2002. Dust in the Earth system: the biogeochemical linking of land, air and sea. Philosophical Transactions of the Royal Society A. 360: 29052924.
Rosenfeld, D., Rudich, Y. & Lahav, R., 2001. Desert dust suppressing precipitation: A possible desertification feedback loop. The Proceedings of the National Academy of Sciences of the United States of America 98: 59755980.
Sassen, K., DeMott, P.J., Prospero, J.M. & Poellot, M.R., 2003. Saharan dust storms and indirect aerosol effects on clouds: CRYSTALFACE results. Geophysical Research Letters 30: 1633, 4 p.
Schmidt, E.D., Machalett, B., Marković, S.B., Tsukamoto, S. & Frechen, M., 2009. Luminescence chronology of the upper part of the Stari Slankamen loess sequence (Vojvodina, Serbia). Quaternary Geochronology: 16.
Seppäla, M., 1971. Stratigraphy and material of the loess layers at Mende, Hungary. Bulletin of the Geological Society of Finland 43: 109123.
Shao, Y., 2008. Physics and Modelling of Wind Erosion. (2nd Revised and Expanded Edition) Springer, 452 pp.
Shao, Y., Yang, Y., Wang, J.J., Song, Z. X., Leslie, L.M., Dong, C.H., Zhang, Z.H., Lin, Z.H., Kanai, Y., Yabuki, S. & Chun, Y.S., 2003. Real-time numerical prediction of northeast Asian dust storms using an integrated modeling system. Journal of Geophysical Research 108: 4691, 18 p.
Sun, D., Bloemendal, J., Rea, D.K., Vandenberghe, J., Jiang, F., An, Z. & Su, R., 2002. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components. Sedimentary Geology 152: 263277.
Sun, D., Bloemendal, J., Rea, D.K., An, Z., Vandenberghe, J., Lu, H., Su, R. & Liu, T.S., 2004. Bimodal grain-size distribution of Chinese loess, and its paleoclimatic implications. Catena 55: 325340.
Sümegi, P., 2005. Loess and Upper Paleolithic Environment in Hungary. Aurea Kiadó, Nagykovácsi: 312 pp.
Sümegi, P. & Hertelendi, E., 1998. Reconstruction of microenvironmental changes in Kopasz Hill loess area at Tokaj (Hungary) between 15,000-70,000 BP years. Radiocarbon 40: 855863.
Sümegi, P., Molnár, M., Svingor, É., Szántó, Zs, Hum, L. & Gulyás, S., 2007. Results of radiocarbon analysis of Upper Weichselian loess sequences from Hungary. Radiocarbon 49: 10231030.
Stevens, T., Marković, S.B., Zech, M., Hambach, U. & Sümegi, P., 2011. Dust deposition and climate in the Carpathian Basin over an independently dated last glacial-interglacial cycle. Quaternary Science Reviews 30: 662681.
Stuut, J-B., Smalley, I. & O'Hara-Dhand, K., 2009. Aeolian dust in Europe: African sources and European deposits. Quaternary International 198: 234245.
Tegen, I., Lacis, A. A. & Fung, I., 1996. The influence of mineral aerosols from disturbed soils on climate forcing. Nature 380: 419422.
Tews, E.K., 1996. Wind erosion rates from meteorological records in eastern Australia 1960–1992. B.Sc. thesis, Griffith University
Újvári, G., Varga, A. & Balogh-Brunstad, Z., 2008. Origin, weathering, and geochemical composition of loess in southwestern Hungary. Quaternary Research 69: 421437.
Újvári, G., Kovács, J., Varga, Gy., Raucsik, B. & Marković, S.B., 2010. Dust flux estimates for the Last Glacial Period in East Central Europe based on terrestrial records of loess deposits: a review. Quaternary Science Reviews 29: 31573166.
Varga, Gy., 2011. Similarities among the Plio-Pleistocene terrestrial aeolian dust deposits in the world and in Hungary. Quaternary International 234: 98108.
Vogel, I.C. & Waterbolk, H.T., 1964. Groningen radiocarbon dates. V. Radiocarbon 6: 349369.
Vriend, M. & Prins, M.A., 2005. Calibration of modelled mixing patterns in loess grain-size distributions: an example from the north-eastern margin of the Tibetan Plateau, China. Sedimentology 52: 13611374.
Weltje, G.J., 1997. End-member modeling of compositional data: numericalstatistical algorithms for solving the explicit mixing problem. Journal of Mathematical Geology 29: 503549.
Weltje, G.J. & Prins, M.A., 2003. Muddled or mixed? Inferring palaeoclimate from size distributions of deep-sea clastics. Sedimentary Geology 162: 3962.
Weltje, G.J. & Prins, M.A., 2007. Genetically meaningful decomposition of grainsize distributions. Sedimentary Geology 202: 409424.
Willis, K.J., Rudner, Z.E. & Sümegi, P., 2000. Full-glacial forests of central and southeastern Europe. Quaternary Research 53: 203213.
Wintle, A.G. & Packman, S.C., 1988. Thermoluminescence ages for three sections in Hungary. Quaternary Science Reviews 7: 315320.
Zender, C.S., Bian, H.S. & Newman, D., 2003. Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology. Journal of Geophysical Research – Atmospheres 108: 4416, 19 p.
Zöller, L., Oches, E.A. & McCoy, W.D., 1994. Towards a revised chronostratigraphy of loess in Austria with respect to key sections in the Czech Republic and in Hungary. Quaternary Geochronology / Quaternary Science Reviews 13: 465472.
Zöller, L. & Wagner, G.A., 1990. Thermoluminescence dating of loess – recent developments. Quaternary International 7/8: 119128.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Netherlands Journal of Geosciences
  • ISSN: 0016-7746
  • EISSN: 1573-9708
  • URL: /core/journals/netherlands-journal-of-geosciences
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 19 *
Loading metrics...

Abstract views

Total abstract views: 148 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd May 2018. This data will be updated every 24 hours.