Published online by Cambridge University Press: 21 November 2014
Real-world networks are often compared to random graphs to assess whether their topological structure could be a result of random processes. However, a simple random graph in large scale often lacks social structure beyond the dyadic level. As a result we need to generate clustered random graph to compare the local structure at higher network levels. In this paper a generalized version of Gleeson's algorithm G(VS, VT, ES, ET, S, T) is advanced to generate a clustered random graph in large-scale which persists the number of vertices |V|, the number of edges |E|, and the global clustering coefficient CΔ as in the real network and it works successfully for nine large-scale networks. Our new algorithm also has advantages in randomness evaluation and computation efficiency when compared with the existing algorithms.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.