Skip to main content Accessibility help

Assessing the computational complexity of multilayer subgraph detection

  • Robert Bredereck (a1), Christian Komusiewicz (a2), Stefan Kratsch (a3), Hendrik Molter (a4), Rolf Niedermeier (a4) and Manuel Sorge (a5)...


Multilayer graphs consist of several graphs, called layers, where the vertex set of all layers is the same but each layer has an individual edge set. They are motivated by real-world problems where entities (vertices) are associated via multiple types of relationships (edges in different layers). We chart the border of computational (in)tractability for the class of subgraph detection problems on multilayer graphs, including fundamental problems such as maximum-cardinality matching, finding certain clique relaxations, or path problems. Mostly encountering hardness results, sometimes even for two or three layers, we can also spot some islands of computational tractability.


Corresponding author

*Corresponding author. Email:


Hide All

An extended abstract (Bredereck et al., 2017) appeared in the proceedings of the 10th International Conference on Algorithms and Complexity (CIAC 2017), held in Athens, Greece, May 24–26, 2017. This long version now contains a reorganization and much broader motivation and interpretation of the results, as well as full proofs of all results. Work started while all authors were with TU Berlin.



Hide All
Agrawal, A., Krithika, R., Lokshtanov, D., Mouawad, A., & Ramanujan, M. S. (2018a). On the parameterized complexity of simultaneous deletion problems. Proceedings of the 37th IARCS annual conference on foundations of software technology and theoretical computer science (FSTTCS ’17) (pp. 9:19:14). Leibniz International Proceedings in Informatics (LIPIcs), vol. 93. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
Agrawal, A., Lokshtanov, D., Mouawad, A., & Saurabh, S. (2018b). Simultaneous feedback vertex set: A parameterized perspective. ACM Transactions on Computation Theory, 10(4), 18:118:25.
Bang-Jensen, J., & Gutin, G. (2009). Digraphs: theory, algorithms and applications (2nd ed.). Springer.
Berlingerio, M., Coscia, M., Giannotti, F., Monreale, A., & Pedreschi, D. (2013). Multidimensional networks: foundations of structural analysis. Proceedings of the 22nd International World Wide Web Conference (WWW ’13), 16(5–6), 567593.
van Bevern, R. (2014). Towards optimal and expressive kernelization for -hitting set. Algorithmica, 70(1), 129147.
Boccaletti, S., Bianconi, G., Criado, R., del Genio, C. I., Gómez-Gardeñes, J., Romance, M., … Zanin, M. (2014). The structure and dynamics of multilayer networks. Physics Reports, 544(1), 1122.
Boden, B., Günnemann, S., Hoffmann, H., & Seidl, T. (2017). Mimag: mining coherent subgraphs in multi-layer graphs with edge labels. Knowledge and Information Systems, 50(2), 417446.
Borgatti, S. P., & Everett, M. G. (2000). Models of core/periphery structures. Social Networks, 21(4), 375395.
Brandstädt, A., Le, V. B., & Spinrad, J. P. (1999). Graph classes: A survey. SIAM Monographs on Discrete Mathematics and Applications, vol. 3. SIAM.
Bredereck, R., Komusiewicz, C., Kratsch, S., Molter, H., Niedermeier, R., & Sorge, M. (2017). Assessing the computational complexity of multi-layer subgraph detection. Proceedings of the 10th international conference on algorithms and complexity (CIAC ’17) (vol. 10236, pp. 128139). LNCS. Springer.
Bui-Xuan, B.-M., Habib, M., & Paul, C. (2008). Competitive graph searches. Theoretical Computer Science, 393(1–3), 7280.
Cai, L. (1996). Fixed-parameter tractability of graph modification problems for hereditary properties. Information Processing Letters, 58(4), 171176.
Cai, L., & Ye, J. (2014). Dual connectedness of edge-bicolored graphs and beyond. Proceedings of the 39th international symposium on mathematical foundations of computer science (MFCS ’14) (vol. 8635., pp. 141152). LNCS, Springer.
Chen, J., Molter, H., Sorge, M., & Suchý, O. (2018a). Cluster editing in multi-layer and temporal graphs. Proceedings of the 29th international symposium on algorithms and computation (ISAAC ’18) (vol. 123, pp. 24:124:13). LIPIcs, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
Chen, J., Niedermeier, R., & Skowron, P. (2018b). Stable marriage with multi-modal preferences. Proceedings of the 2018 ACM conference on economics and computation (EC ’18) (pp. 269286). ACM.
Cohen, J. (2008). Trusses: Cohesive subgraphs for social network analysis. National Security Agency Technical Report, 16.
Cygan, M., Fomin, F. V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., … Saurabh, S. (2015). Parameterized algorithms. Springer.
Dell, H., & Marx, D. (2012). Kernelization of packing problems. Proceedings of the 23rd annual ACM-SIAM symposium on discrete algorithms (SODA ’12) (pp. 6881). SIAM.
Diestel, R. (2017). Graph theory (vol. 173, 5th ed.). Graduate Texts in Mathematics. Springer.
Dong, X., Frossard, P., Vandergheynst, P., & Nefedov, N. (2012). Clustering with multi-layer graphs: A spectral perspective. IEEE Transactions on Signal Processing, 60(11), 58205831.
Dong, X., Frossard, P., Vandergheynst, P., & Nefedov, N. (2014). Clustering on multi-layer graphs via subspace analysis on Grassmann manifolds. IEEE Transactions on Signal Processing, 62(4), 905918.
Downey, R. G., & Fellows, M. R. (2013). Fundamentals of parameterized complexity. Springer.
Eppstein, D., & Spiro, E. S. (2012). The -index of a graph and its application to dynamic subgraph statistics. Journal of Graph Algorithms and Applications, 16(2), 543567.
Erdös, P., & Rado, R. (1960). Intersection theorems for systems of sets. Journal of the London Mathematical Society, 35(1), 8590.
Fellows, M. R., Hermelin, D., Rosamond, F. A., & Vialette, S. (2009). On the parameterized complexity of multiple-interval graph problems. Theoretical Computer Science, 410(1), 5361.
Fertin, G., Komusiewicz, C., Mohamed-Babou, H., & Rusu, I. (2015). Finding supported paths in heterogeneous networks. Algorithms, 8(4), 810831.
Flum, J., & Grohe, M. (2006). Parameterized complexity theory. Springer.
Gai, A.-T., Habib, M., Paul, C., & Raffinot, M. (2003). Identifying common connected components of graphs. Techical Report, RR-LIRMM-03016, LIRMM, Université de Montpellier II.
Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP-completeness. Freeman.
Golumbic, M. C. (2004). Algorithmic graph theory and perfect graphs (vol. 57, 2nd ed.). Annals of Discrete Mathematics. Elsevier B. V.
Holme, P. (2015). Modern temporal network theory: a colloquium. The European Physical Journal B, 88(9), 234.
Holme, P., & Saramäki, J. (2012). Temporal networks. Physics Reports, 519(3), 97125.
Jiang, D., & Pei, J. (2009). Mining frequent cross-graph quasi-cliques. ACM Transactions on Knowledge Discovery from Data, 2(4).
Johnson, D. S. (1987). The NP-completeness column: An ongoing guide. Journal of Algorithms, 8(3), 438448.
Jukna, Stasys. (2011). Extremal Combinatorics—with applications in computer science. Texts in Theoretical Computer Science. An EATCS Series. Springer.
Kano, M., & Li, X. (2008). Monochromatic and heterochromatic subgraphs in edge-colored graphs—A survey. Graphs and Combinatorics, 24(4), 237263.
Khot, S., & Raman, V. (2002). Parameterized complexity of finding subgraphs with hereditary properties. Theoretical Computer Science, 289(2), 9971008.
Kim, J., & Lee, J. (2015). Community detection in multi-layer graphs: A survey. SIGMOD Record, 44(3), 3748.
Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., & Porter, M. A. (2014). Multilayer networks. Journal of Complex Networks, 2(3), 203271.
Komusiewicz, C., & Niedermeier, R. (2012). New races in parameterized algorithmics. Proceedings of the 37th international symposium on mathematical foundations of computer science (MFCS ’12) (vol. 7464). LNCS. Springer.
Kratsch, S. (2012). Polynomial kernelizations for MIN f+∏1 and MAX NP. Algorithmica 63(1–2), 532550.
Latapy, M., Viard, T., & Magnien, C. (2018). Stream graphs and link streams for the modeling of interactions over time. Social Network Analysis and Mining, 8(1), 61.
Lewis, J. M., & Yannakakis, M. (1980). The node-deletion problem for hereditary properties is NP-complete. Journal of Computer and System Sciences, 20(2), 219230.
Lin, B. (2015). The parameterized complexity of -biclique. Proceedings of the 26th annual ACM-SIAM symposium on discrete algorithms (SODA ’15) (pp. 605615). SIAM.
Magnani, M., & Rossi, L. (2011). The ML-model for multi-layer social networks. Proceedings of the international conference on advances in social networks analysis and mining (ASONAM ’11) (pp. 512). IEEE Computer Society.
Michail, O. (2016). An introduction to temporal graphs: An algorithmic perspective. Internet Mathematics, 12(4), 239280.
Monien, B. (1985). How to find long paths efficiently. Annals of Discrete Mathematics, 25, 239254.
Moser, H. (2009). Finding optimal solutions for covering and matching problems. Ph.D. thesis, Institut für Informatik, Friedrich-Schiller Universität Jena.
Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., & Onnela, J.-P. (2010). Community structure in time-dependent, multiscale, and multiplex networks. Science, 328(5980), 876878.
Nastos, J., & Gao, Y. (2013). Familial groups in social networks. Social Networks, 35(3), 439450.
Nichterlein, A. (2014). Degree-constrained editing of small-degree graphs. Ph.d. thesis, TU Berlin.
Niedermeier, R. (2006). Invitation to fixed-parameter algorithms. Oxford University Press.
Niedermeier, R. (2010). Reflections on multivariate algorithmics and problem parameterization. Proceedings of the 27th international symposium on theoretical aspects of computer science (STACS ’10) (vol. 5, pp. 1732). Germany: LIPIcs IBFI Dagstuhl.
Plummer, M. D. (2007). Graph factors and factorization: 1985-2003: A survey. Discrete Mathematics, 307(7–8), 791821.
Rossi, L., Musolesi, M., & Torsello, A. (2015). On the k-anonymization of time-varying and multi-layer social graphs. Proceedings of the 9th international conference on web and social media (ICWSM ’15) (pp. 377386). AAAI Press.
Seidman, S. B. (1983). Network structure and minimum degree. Social Networks, 5(3), 269287.
Zeng, Z., Wang, J., Zhou, L., & Karypis, G. (2007). Out-of-core coherent closed quasi-clique mining from large dense graph databases. ACM Transactions on Database Systems, 32(2), 13.


Assessing the computational complexity of multilayer subgraph detection

  • Robert Bredereck (a1), Christian Komusiewicz (a2), Stefan Kratsch (a3), Hendrik Molter (a4), Rolf Niedermeier (a4) and Manuel Sorge (a5)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed