Skip to main content
×
×
Home

Bayesian approach to multilayer stochastic blockmodel and network changepoint detection

  • YUNKYU SOHN (a1) (a2) and JONG HEE PARK (a3)
Abstract

Network scholars commonly encounter multiple networks, each of which is possibly governed by distinct generation rules while sharing a node group structure. Although the stochastic blockmodeling—detecting such latent group structures with group-specific connection profiles—has been a major topic of recent research, the focus has been given to the assortative group discovery of a single network. Despite its universality, concepts, and techniques for simultaneous characterization of node traits of multilayer networks, constructed by stacking multiple networks into layers, have been limited. Here, we propose a Bayesian multilayer stochastic blockmodeling framework that uncovers layer-common node traits and factors associated with layer-specific network generating functions. Without assuming a priori layer-specific generation rules, our fully Bayesian treatment allows probabilistic inference of latent traits. We extend the approach to detect changes in block structures embedded in temporal layers of network time series. We demonstrate the method using synthetic multilayer networks with assortative, disassortative, core-periphery, and overlapping community structures. Finally, we apply the method to empirical social network datasets, and find that it detects significant latent traits and structural changepoints. In particular, we uncover endogenous historical regimes associated with distinct constellations of states in United States Senate roll call vote similarity patterns.

Copyright
References
Hide All
Ahn, Y.-Y., Bagrow, J. P., & Lehmann, S. (2010). Link communities reveal multiscale complexity in networks. Nature, 466 (7307), 761764.
Airoldi, E. M., Blei, D. M., Fienberg, S. E., & Xing, E. P. (2009). Mixed membership stochastic blockmodels. Advances in Neural Information Processing Systems, 9, 3340.
Akoglu, L., Tong, H., & Koutra, D. (2015). Graph-based anomaly detection and description: A survey. Data Mining and Knowledge Discovery, 29 (3), 626688.
Araujo, M., Papadimitriou, S., Głünnemann, S., Faloutsos, C., Basu, P., Swami, A., . . . Koutra, D. (2014). Com2: Fast automatic discovery of temporal (‘comet’) communities. In Tseng, V. S., Ho, T. B., Zhou, Z.-H., Chen, A. L. P., & Kao, H.-Y. (Eds.), Advances in Knowledge Discovery and Data Mining: 18th Pacific-Asia Conference, PAKDD 2014, Tainan, Taiwan, May 13–16, 2014. Proceedings, Part II (pp. 271283). New York, NY: Springer International Publishing.
Bickel, P. J., & Chen, A. (2009). A nonparametric view of network models and Newman–Girvan and other modularities. Proceedings of the National Academy of Sciences, 106 (50), 2106821073.
Boccaletti, S., Bianconi, G., Criado, R., Del Genio, C., Gómez-Gardeñes, J., Romance, M., . . . Zanin, M. (2014). The structure and dynamics of multilayer networks. Physics Reports, 544 (1), 1122.
Borgatti, S. P., & Everett, M. G. (2000). Models of core/periphery structures. Social Networks, 21 (4), 375395.
Chaudhuri, K., Chung, F., & Tsiatas, A. (2012). Spectral clustering of graphs with general degrees in the extended planted partition model. Journal of Machine Learning Research, 23 (35), 123.
Chib, S. (1996). Calculating posterior distributions and modal estimates in markov mixture models. Journal of Econometrics, 75, 7998.
Chib, S. (1998). Estimation and comparison of multiple change-point models. Journal of Econometrics, 86 (2), 221241.
De Lathauwer, L., De Moor, B., & Vandewalle, J. (2000). A multilinear singular value decomposition. SIAM Journal on Matrix Analysis and Applications, 21 (4), 12531278.
Expert, P., Evans, T. S., Blondel, V. D., & Lambiotte, R. (2011). Uncovering space-independent communities in spatial networks. Proceedings of the National Academy of Sciences, 108 (19), 76637668.
Faust, K. (1988). Comparison of methods for positional analysis: Structural and general equivalences. Social Networks, 10 (4), 313341.
Fishkind, D. E., Sussman, D. L., Tang, M., Vogelstein, J. T., & Priebe, C. E. (2013). Consistent adjacency-spectral partitioning for the stochastic block model when the model parameters are unknown. SIAM Journal on Matrix Analysis and Applications, 34 (1), 2339.
Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486 (3), 75174.
Fortunato, S., & Barthelemy, M. (2007). Resolution limit in community detection. Proceedings of the National Academy of Sciences, 104 (1), 3641.
Gelfand, A. E., & Smith, A. F. M. (1990, June). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85 (410), 398409.
Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99 (12), 78217826.
Gopalan, P. K., & Blei, D. M. (2013). Efficient discovery of overlapping communities in massive networks. Proceedings of the National Academy of Sciences, 110 (36), 1453414539.
Guimera, R., & Amaral, L. A. N. (2005). Functional cartography of complex metabolic networks. Nature, 433 (7028), 895900.
Han, Q., Xu, K., & Airoldi, E. (2015). Consistent estimation of dynamic and multi-layer block models. Proceedings of the 32nd International Conference on Machine Learning, 37, 15111520.
Handcock, M. S., Raftery, A. E., & Tantrum, J. M. (2007). Model-based clustering for social networks. Journal of the Royal Statistical Society: Series A (Statistics in Society), 170 (2), 301354.
Hoff, P. D. (2005). Bilinear mixed-effects models for dyadic data. Journal of the American Statistical Association, 100 (469), 286295.
Hoff, P. D. (2008). Modeling homophily and stochastic equivalence in symmetric relational data. In Platt, J., Koller, D., Singer, Y., & Roweis, S. (Eds.), Advances in neural information processing systems (vol. 20, pp. 657664). Cambridge: Cambridge University Press.
Hoff, P. D. (2009). Simulation of the matrix bingham-von mises-fisher distribution, with applications to multivariate and relational data. Journal of Computational and Graphical Statistics, 18 (2), 438456.
Hoff, P. D. (2011). Hierarchical multilinear models for multiway data. Computational Statistics & Data Analysis, 55, 530543.
Hoff, P. D., Raftery, A. E., & Handcock, M. S. (2002). Latent space approaches to social network analysis. Journal of the American Statistical Association, 97 (460), 10901098.
Hofman, J. M., & Wiggins, C. H. (2008). Bayesian approach to network modularity. Physical Review Letters, 100 (25), 258701.
Holland, P. W., Laskey, K. B., & Leinhardt, S. (1983). Stochastic blockmodels: First steps. Social Networks, 5 (2), 109137.
Holme, P., & Saramäki, J. (2012). Temporal networks. Physics Reports, 519 (3), 97125.
Karrer, B., & Newman, M. E. (2011). Stochastic blockmodels and community structure in networks. Physical Review E, 83 (1), 016107.
Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., & Porter, M. A. (2014). Multilayer networks. Journal of Complex Networks, 2 (3), 203271.
Kolar, M., Song, L., Ahmed, A., & Xing, E. P. (2010). Estimating time-varying networks. The Annals of Applied Statistics, 4 (1), 94123.
Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions and applications. SIAM Review, 51 (3), 455500.
Krzakala, F., Moore, C., Mossel, E., Neeman, J., Sly, A., & Zdeborová, L. (2013). Spectral redemption in clustering sparse networks. Proceedings of the National Academy of Sciences, 110 (52), 2093520940.
Lancichinetti, A., Radicchi, F., Ramasco, J. J., & Fortunato, S. (2011). Finding statistically significant communities in networks. PloS One, 6 (4), e18961.
Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature, 401 (6755), 788791.
Lei, J., & Rinaldo, A. (2014). Consistency of spectral clustering in stochastic block models. The Annals of Statistics, 43 (1), 215237.
Liu, J. S. (1994). The collapsed Gibbs sampler in Bayesian computations with applications to a gene regulation problem. Journal of the American Statistical Association, 89 (427), 958966.
Magnani, M., Micenkova, B., & Rossi, L. (2013). Combinatorial analysis of multiple networks. preprint, arXiv:1303.4986.
McCarty, N., Poole, K. T., & Rosenthal, H. (2006). Polarized America: The dance of ideology and unequal riches, Vol. 5. Cambridge, MA: MIT Press.
Meila, M. (2003). Comparing clusterings by the variation of information. In Schoelkopf, B. & Warmuth, M. K. (Eds.), Learning Theory and Kernel Machines: 16th Annual Conference on Computational Learning Theory and 7th Kernel workshop, CLOT/Kernel 2003, Washington, DC, USA, August 24–27, 2003, Proceedings (vol. 2777, pp. 173187). Berlin: Springer.
Moody, J., & White, D. R. (2003). Structural cohesion and embeddedness: A hierarchical concept of social groups. American Sociological Review, 68 (1), 103127.
Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., & Onnela, J.-P. (2010). Community structure in time-dependent, multiscale, and multiplex networks. Science, 328 (5980), 876878.
Nadakuditi, R. R., & Newman, M. E. (2013). Spectra of random graphs with arbitrary expected degrees. Physical Review E, 87 (1), 012803.
Newman, M. E. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences, 103 (23), 85778582.
Newman, M. E. (2013, Oct). Spectral methods for community detection and graph partitioning. Physical Review E, 88, 042822. doi: 10.1103/Phys-RevE.88.042822
Newman, M. E., & Leicht, E. A. (2007). Mixture models and exploratory analysis in networks. Proceedings of the National Academy of Sciences, 104 (23), 95649569.
Ng, A. Y., Jordan, M. I., & Weiss, Y. (2002). On spectral clustering: Analysis and an algorithm. Advances in Neural Information Processing Systems, 2, 849856.
Nowicki, K., & Snijders, T. A. B. (2001). Estimation and prediction for stochastic blockstructures. Journal of the American Statistical Association, 96 (455), 10771087.
Palla, G., Barabási, A.-L., & Vicsek, T. (2007). Quantifying social group evolution. Nature, 446 (7136), 664667.
Paul, S., & Chen, Y. (2016). Consistent community detection in multi-relational data through restricted multi-layer stochastic blockmodel. Electronic Journal of Statistics, 10 (2), 38073870.
Peel, L., & Clauset, A. (2015). Detecting change points in the large-scale structure of evolving networks. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (pp. 29142920). Austin, TX: AAAI Press.
Peixoto, T. P. (2013). Eigenvalue spectra of modular networks. Physical Review Letters, 111 (9), 098701.
Peixoto, T. P. (2015). Inferring the mesoscale structure of layered, edge-valued, and time-varying networks. Physical Review E, 92 (4), 042807.
Riolo, M. A., & Newman, M. E. (2014). First-principles multiway spectral partitioning of graphs. Journal of Complex Networks, 2 (2), 121140.
Rohe, K., Chatterjee, S., & Yu, B. (2011). Spectral clustering and the high-dimensional stochastic blockmodel. The Annals of Statistics, 39 (4), 18781915.
Rosvall, M., & Bergstrom, C. T. (2008). Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences, 105 (4), 11181123.
Smith, A. F. M., & Roberts, G. O. (1993). Bayesian computation via the gibbs sampler and related markov chain monte carlo methods. Journal of the Royal Statistical Society. Series B, Statistical Methodology, 55 (1), 323.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society. Series B, Statistical Methodology, 64 (4), 583639.
Stanley, N., Shai, S., Taylor, D., & Mucha, P. (2016). Clustering network layers with the strata multilayer stochastic block model. IEEE Transactions on Network Science and Engineering, 3 (2), 95105.
Sussman, D. L., Tang, M., Fishkind, D. E., & Priebe, C. E. (2012). A consistent adjacency spectral embedding for stochastic blockmodel graphs. Journal of the American Statistical Association, 107 (499), 11191128.
Ward, M. D., Ahlquist, J. S., & Rozenas, A. (2013). Gravity's rainbow: A dynamic latent space model for the world trade network. Network Science, 1 (1), 95118.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Network Science
  • ISSN: 2050-1242
  • EISSN: 2050-1250
  • URL: /core/journals/network-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
PDF
Supplementary materials

Sohn and Park supplementary material
Sohn and Park supplementary material

 PDF (697 KB)
697 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed