Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 20
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    BROT, HILLA MUCHNIK, LEV GOLDENBERG, JACOB and LOUZOUN, YORAM 2016. Evolution through bursts: Network structure develops through localized bursts in time and space. Network Science, Vol. 4, Issue. 03, p. 293.

    Chesney, Thomas 2016. The Cascade Capacity Predicts Individuals to Seed for Diffusion Through Social Networks. Systems Research and Behavioral Science, p. n/a.

    Grewal, Dhruv Bart, Yakov Spann, Martin and Zubcsek, Peter Pal 2016. Mobile Advertising: A Framework and Research Agenda. Journal of Interactive Marketing, Vol. 34, p. 3.

    Jiang, Zhengrui Scheibe, Kevin P. Nilakanta, Sree and Qu, Xinxue Shawn 2016. The Economics of Public Beta Testing*. Decision Sciences,

    Lobel, Ilan Sadler, Evan and Varshney, Lav R. 2016. Customer Referral Incentives and Social Media. Management Science,

    Nejad, Mohammad G. Amini, Mehdi and Sherrell, Daniel L. 2016. The profit impact of revenue heterogeneity and assortativity in the presence of negative word-of-mouth. International Journal of Research in Marketing, Vol. 33, Issue. 3, p. 656.

    Wang, Yi and Redmiles, David 2016. Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing - CSCW '16. p. 302.

    Elwert, Felix 2015. Public health: real-world network targeting of interventions. The Lancet, Vol. 386, Issue. 9989, p. 112.

    Iyengar, Raghuram Van den Bulte, Christophe and Lee, Jae Young 2015. Social Contagion in New Product Trial and Repeat. Marketing Science, Vol. 34, Issue. 3, p. 408.

    Kim, David A Hwong, Alison R Stafford, Derek Hughes, D Alex O'Malley, A James Fowler, James H and Christakis, Nicholas A 2015. Social network targeting to maximise population behaviour change: a cluster randomised controlled trial. The Lancet, Vol. 386, Issue. 9989, p. 145.

    Nejad, Mohammad G. Amini, Mehdi and Babakus, Emin 2015. Success Factors in Product Seeding: The Role of Homophily. Journal of Retailing, Vol. 91, Issue. 1, p. 68.

    Sela, Alon Ben-Gal, Irad Pentland, Alex Sandy and Shmueli, Erez 2015. Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015 - ASONAM '15. p. 629.

    Aral, Sinan and Walker, Dylan 2014. Tie Strength, Embeddedness, and Social Influence: A Large-Scale Networked Experiment. Management Science, Vol. 60, Issue. 6, p. 1352.

    Bhargava, Hemant K. 2014. Platform technologies and network goods: insights on product launch and management. Information Technology and Management, Vol. 15, Issue. 3, p. 199.

    Mochalova, Anastasia and Nanopoulos, Alexandros 2014. A targeted approach to viral marketing. Electronic Commerce Research and Applications, Vol. 13, Issue. 4, p. 283.

    Pei, Sen Muchnik, Lev Andrade, Jr., José S. Zheng, Zhiming and Makse, Hernán A. 2014. Searching for superspreaders of information in real-world social media. Scientific Reports, Vol. 4,

    Sela, Alon and Ben-Gal, Irad 2014. 2014 IEEE 28th Convention of Electrical & Electronics Engineers in Israel (IEEEI). p. 1.

    Walker, Dylan and Muchnik, Lev 2014. Design of Randomized Experiments in Networks. Proceedings of the IEEE, Vol. 102, Issue. 12, p. 1940.

    Wang, Xiaotian and Collins, Andrew 2014. Proceedings of the Winter Simulation Conference 2014. p. 3084.

    Pei, Sen and Makse, Hernán A 2013. Spreading dynamics in complex networks. Journal of Statistical Mechanics: Theory and Experiment, Vol. 2013, Issue. 12, p. P12002.


Engineering social contagions: Optimal network seeding in the presence of homophily

  • DOI:
  • Published online: 30 July 2013

We use data on a real, large-scale social network of 27 million individuals interacting daily, together with the day-by-day adoption of a new mobile service product, to inform, build, and analyze data-driven simulations of the effectiveness of seeding (network targeting) strategies under different social conditions. Three main results emerge from our simulations. First, failure to consider homophily creates significant overestimation of the effectiveness of seeding strategies, casting doubt on conclusions drawn by simulation studies that do not model homophily. Second, seeding is constrained by the small fraction of potential influencers that exist in the network. We find that seeding more than 0.2% of the population is wasteful because the gain from their adoption is lower than the gain from their natural adoption (without seeding). Third, seeding is more effective in the presence of greater social influence. Stronger peer influence creates a greater than additive effect when combined with seeding. Our findings call into question some conventional wisdom about these strategies and suggest that their overall effectiveness may be overestimated.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

E. Abrahamson , & L. Rosenkopf (1997). Social network effects on the extent of innovation diffusion: A computer simulation. Organization Science, 8 (3), 289309.

S. Aral (2011). Identifying social influence: A comment on opinion leadership and social contagion in new product diffusion. Marketing Science, 30 (2), 217223.

S. Aral , L. Muchnik , & A. Sundararajan (2009). Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks. Proceedings of the National Academy of Sciences of the United States of America, 106 (51), 2154421549. doi:10.1073/pnas.0908800106

S. Aral & M. Van Alstyne (2011). The diversity-bandwidth tradeoff. American Journal of Sociology, 117 (1), 90171.

S. Aral , & D. Walker (2011). Creating social contagion through viral product design: A randomized trial of peer influence in networks. Management Science, 57 (9), 16231639.

S. Aral , & D. Walker (2012). Identifying influential and susceptible members of social networks. Science, 337 (6092), 337341. doi:10.1126/science.1215842

E. Bakshy , I. Rosenn , C. Marlow , & L. Adamic (2012b). The role of social networks in information diffusion. Proceedings of the 21st International Conference on World Wide Web (WWW), April 16–20, Lyon, France.

M. Barthélemy , A. Barrat , R. Pastor-Satorras , & A. Vespignani (2004). Velocity and hierarchical spread of epidemic outbreaks in scale-free networks. Physical Review Letters, 92 (17), 178701. doi:10.1103/PhysRevLett.92.178701

F. M. Bass (1969). A new product growth for model consumer durables. Management Science, 15 (5), 215227. doi:10.1287/mnsc.15.5.215

M. H. Becker (1970). Factors affecting diffusion of innovations among health professionals. American Journal of Public Health, 60 (2), 294304.

E. Biyalogorsky , E. Gerstner , & B. Libai (2008). Customer referral management: Optimal reward programs. Marketing Science, 20 (1), 8295.

S. P. Borgatti (2005). Centrality and network flow. Social Networks, 27 (1), 5571. doi:10.1016/j.socnet.2004.11.008

F. A. Buttle (1998). Word of mouth: Understanding and managing referral marketing. Journal of Strategic Marketing, 6 (3), 241254.

D. Centola (2010). The spread of behavior in an online social network experiment. Science, 329 (5996), 11941197.

D. Centola (2011). An experimental study of homophily in the adoption of health behavior. Science, 334 (6060), 12691272.

D. Centola , & M. Macy (2007). Complex contagions and the weakness of long ties. American Journal of Sociology, 113 (3), 702734.

C. Chatfield , & G. J. Goodhardt (1973). A consumer purchasing model with erlang inter-purchase times. Journal of the American Statistical Association, 68, 828835.

N. A. Christakis , & J. H. Fowler (2007). The spread of obesity in a large social network over 32 years. The New England Journal of Medicine, 357 (4), 370379.

R. Cohen , K. Erez , ben-Avraham, D., & S. Havlin (2001). Breakdown of the Internet under intentional attack. Physical Review Letters, 86, 3683685

Y. Dover , J. Goldenberg , & D. Shapira (2012). Network Traces on Penetration: Uncovering Degree Distribution from Adoption Data. Marketing Science, 31 (4), 689712.

N. Eagle , M. Macy , & R. Claxton (2010). Network diversity and economic development. Science, 328 (5981), 10291031.

L. C. Freeman (1979). Centrality in social networks: Conceptual clarification. Social networks, 1, 215239.

A. Galeotti , & S. Goyal (2009). Influencing the influencers: A theory of strategic diffusion. The RAND Journal of Economics, 40 (3), 509532. doi:10.1111/j.1756-2171.2009.00075.x

D. Godes , & D. Mayzlin (2009). Firm-created word-of-mouth communication: Evidence from a field test. Marketing Science, 28 (4), 721739.

J. Goldenberg , S. Han , D. R. Lehmann , & J. W. Hong (2009). The role of hubs in the adoption process. Journal of Marketing, 73 (2), 113.

J. Goldenberg , B. Libai , & E. Muller (2001). Talk of the network: A complex systems look at the underlying process of word-of-mouth. Marketing Letters, 12 (3), 211223.

R. Iyengar , C. Van den Bulte , & T. W. Valente (2011). Opinion leadership and social contagion in new product diffusion. Marketing Science, 30 (195).

M. Kitsak , L. K. Gallos , S. Havlin , F. Liljeros , L. Muchnik , H. E. Stanley , & H. A. Makse (2010). Identification of influential spreaders in complex networks. Nature Physics, 6 (11), 888893. doi:10.1038/nphys1746

V. E. Krebs (2002). Uncloaking terrorist networks. First Monday, 7 (4). Retrieved from

D. Lazer , A. Pentland , L. Adamic , S. Aral , A.-L. Barabási , D. Brewer ,. . . M. V. Alstyne (2009). Computational social science. Science, 323 (5915), 721723. doi:10.1126/science.1167742

S. Leider , M. M. Mobius , T. Rosenblat , & Q.A. Do (2009). Directed altruism and enforced reciprocity in social networks. Quarterly Journal of Economics, 124 (4), 18151851.

J. Leskovec , L. A. Adamic , & B. A. Huberman (2007). The dynamics of viral marketing. ACM Transactions on the Web, 1 (1).

B. Libai , E. Biyalogorsky , & E. Gerstner (2003). Setting referral fees in affiliate marketing. Journal of Service Research, 5 (4), 303315. doi:10.1177/1094670503005004003

D. Liben-Nowell , & J. Kleinberg (2008). Tracing information flow on a global scale using internet chain-letter data. Proceedings of the National Academy of Sciences of the United States of America, 105 (12), 46334638.

M. McPherson , L. Smith-Lovin , & J. M. Cook (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27, 415444. doi:10.1146/annurev.soc.27.1.415

M. E. J. Newman (2003). The structure and function of complex networks. SIAM Review, 45, 167256.

E. Noel , & B. Nyhan (2011). The “unfriending” problem: The consequences of homophily in friendship retention for causal estimates of social influence. Social Networks, 33 (3), 211218.

R. Pastor-Satorras , & A. Vespignani (2001). A. Epidemic spreading in scale-free networks. Physical Review Letters, 86, 3203203.

P. H. Reingen , & J. B. Kernan (1986). Analysis of referral networks in marketing: Methods and illustration. Journal of Marketing Research, 23 (4), 370378.

M. Rosvall , & C. T. Bergstrom (2008). Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences of the United States of America, 105 (4), 11181123. doi:10.1073/pnas.0706851105

P. Schmitt , B. Skiera & C. Van den Bulte (2011). Referral programs and customer value. Journal of Marketing, 75 (1), 4659. doi:10.1509/jmkg.75.1.46

J. Singh (1990). Voice, exit, and negative word-of-mouth behaviors: An investigation across three service categories. Journal of the Academy of Marketing Science, 18 (1), 115. doi:10.1177/009207039001800101

M. Uncles , A. Ehrenberg , & K. Hammond (1995). Patterns of buyer behavior: Regularities, models, and extensions. Marketing Science, 14 (3), G7178. doi:10.1287/mksc.14.3.G71

T. W. Valente (2012). Network interventions. Science, 337 (6090), 4953. doi:10.1126/science.1217330

C. Van den Bulte , & Y. V. Joshi (2007). New product diffusion with influentials and imitators. Marketing Science, 26 (3), 400421. doi:10.1287/mksc.1060.0224

D. J. Watts , & P. S. Dodds (2007). Influentials, networks, and public opinion formation. Journal of Consumer Research, 34, 441458.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Network Science
  • ISSN: 2050-1242
  • EISSN: 2050-1250
  • URL: /core/journals/network-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *