Skip to main content
×
×
Home

Gravity's Rainbow: A dynamic latent space model for the world trade network

  • MICHAEL D. WARD (a1), JOHN S. AHLQUIST (a2) and ARTURAS ROZENAS (a3)
Abstract

The gravity model, long the empirical workhorse for modeling international trade, ignores network dependencies in bilateral trade data, instead assuming that dyadic trade is independent, conditional on a hierarchy of covariates over country, time, and dyad. We argue that there are theoretical as well as empirical reasons to expect network dependencies in international trade. Consequently, standard gravity models are empirically inadequate. We combine a gravity model specification with “latent space” networks to develop a dynamic mixture model for real-valued directed graphs. The model simultaneously incorporates network dependencies in both trade incidence and trade volumes. We estimate this model using bilateral trade data from 1990 to 2008. The model substantially outperforms standard accounts in terms of both in- and out-of-sample predictive heuristics. We illustrate the model's usefulness by tracking trading propensities between the USA and China.

Copyright
References
Hide All
Anderson, J. E. (1979). A theoretical foundation for the gravity equation. American Economic Review, 69 (1), 106116.
Anderson, J. E., & Marcouiller, D. (2002). Insecurity and the pattern of trade: An empirical investigation. Review of Economics and Statistics, 84 (2), 342352.
Anderson, J. E., & van Wincoop, E. (2003). Gravity with gravitas: A solution to the border puzzle. American Economic Review, 93, 170192.
Baier, S. L., & Bergtrand, J. H. (2007). Do free trade agreements actually increase members' international trade? Journal of International Economics, 71, 7295.
Baier, S. L., & Bergtrand, J. H. (2009). Bonus vetus OLS: a simple method for approximating international trade-cost effects using the gravity equation. Journal of International Economics, 77, 7785.
Baldwin, R., & Harrigan, J. (2011). Zeros, quality and space: Trade theory and trade evidence. American Economic Journal: Microeconomics, 3 (2), 6088.
Barbieri, K., & Schneider, G. (1999). Globalization and peace: Assessing new directions in the study of trade and conflict. Journal of Peace Research, 36 (4), 387404.
Bergstrand, J. H. (1985). The gravity equation in international trade: Some microeconomic foundations and empirical evidence. Review of Economics and Statistics, 67 (3), 474481.
Bhattacharya, K., Mukherjee, G., Saramäki, J., Kaski, K., & Manna, S. S. (2008). The international trade network: Weighted network analysis and modeling. Journal of Statistical Mechanics, 2008, P02002.
Bliss, H., & Russett, B. (1998). Democratic trading partners: The liberal connection, 1962–1989. Journal of Politics, 60 (4), 11261147.
Clauset, A., Shalizi, C. R., & Newman, M. E. J. (2009). Power law distributions in empirical data. SIAM Review, 51 (4), 661703.
deBenedictis, L. Benedictis, L., & Tajoli, L. (2011). The world trade network. The World Economy, 34 (8), 14171454.
Deardorff, A. V. (1998). Determinants of bilateral trade: Does gravity work in a neoclassical world? In Frankel, J. A. (Ed.), The regionalization of the world economy (pp. 732). Chicago, IL: University of Chicago.
Deardorff, A., & Stern, R. M. (1990). Computational analysis of global trading arrangements. Ann Arbor, MI: The University of Michigan Press.
Deardorff, A. V., & Stern, R. M. (1998). Measurement of nontariff barriers. Ann Arbor, MI: The University of Michigan Press.
Desmarais, B. A., & Cranmer, S. J. (2012). Statistical inference for valued-edge networks: The generalized exponential random graph model. Plos One, 7 (1), e30136.
Fagiolo, G. (2009). The international-trade network: Gravity equations and topological properties. http://arxiv.org/abs/0908.2086, arXiv:0908.2086 [q-fin.GN]
Fagiolo, G., Reyez, J., & Schiavo, S. (2010a). The evolution of the world trade web. Journal of Evolutionary Economics, 20 (4), 479514.
Fagiolo, G., Reyez, J., & Schiavo, S. (2010b). International trade and financial integration. Quantitative Finance, 10 (4), 389399.
Feenstra, R. C. (2002). Border effects and the gravity equation: Consistent methods for estimation. Scottish Journal of Political Economy, 49, 491506.
Frank, O., & Strauss, D. (1986). Markov graphs. Journal of the American Statistical Association, 81, 832842.
Gabriel, K. R. (1998). Generalised bilinear regression. Biometrika, 85 (3), 689700.
Garlaschelli, D., & Loffredo, M. I. (2004). Fitness-dependent topological properties of the world trade web. Physical Review Letters, 93 (18), 188701 (1–4).
Garlaschelli, D., & Loffredo, M. I. (2005). Structure and evolution of the world trade network. Physica A, 335, 138144.
Gill, P. S., & Swartz, T. B. (2001). Statistical analyses for round robin interaction data. The Canadian Journal of Statistics. La Revue Canadienne de Statistique, 29 (2), 321331.
Gleditsch, K. S., & Ward, M. D. (2001). Measuring space: A minimum distance database and applications to international studies. Journal of Peace Research, 38 (6), 749768.
Goenner, C. F. (2003). A Hierarchical Linear Model of Bilateral Trade: The Effect of Geography and Institutions. Department of Economics, University of North Dakota. URL: http://www.business.und.edu/goenner/research/papers.html.
Goenner, C. F. (2004). Uncertainty of the liberal peace. Journal of Peace Research, 41 (5), 589605.
Goldstein, J., Rivers, D., & Tomz, M. (2007). Institutions in international relations: Understanding the effects of the GATT and the WTO on world trade. International Organization, 61 (Winter), 3767.
Helpman, E., Melitz, M., & Rubinstein, Y. (2008). Estimating trade flows: Trading partners and trading volumes. Quarterly Journal of Economics, 123 (2), 441487.
Hilgerdt, F. (1943). The case for multilateral trade. The American Economic Review, 33 (1), 393407.
Hoff, P. D. (2005). Bilinear mixed effects models for dyadic data. Journal of the American Statistical Association, 100, 286295.
Hoff, P. D. (2007). Extending the rank likelihood for semiparametric copula estimation. Annals of Applied Statistics, 1 (1), 265283.
Hoff, P. D., Raftery, A. E., & Handcock, M. S. (2002). Latent space approaches to social network analysis. Journal of the American Statistical Association, 97 (460), 10901098.
Krivitsky, P. N. (2012). Exponential random graph models for valued networks. Electronic Journal of Statistics, 6, 11001128.
Li, H., & Loken, E. (2002). A unified theory of statistical analysis and inference for variance component models for dyadic data. Statistica Sinica, 12 (2), 519535.
Linneman, H. (1966). An econometric study of international trade flows. Amsterdam: North-Holland.
Malloy, T. E., & Kenny, D. A. (1986). The social relations model: An integrative method for personality research. Journal of Personality, 54 (1), 199225.
Maskus, K. E., & Ramazani, R. (1993). Testing the Heckscher–Ohlin–Vanek theorem in an industrializing economy: The case of Korea. Review of Economics and Statistics, 75 (3), 568572.
Oguledo, V., & MacPhee, C. (1994). Gravity model: A reformulation and application to discriminatory trade arrangements. Applied Economics, 40, 315337.
Pattison, P. E., & Robins, G. L. (2002). Neighbourhood-based models for social networks. Sociological Methodology, 32, 301337.
Plümper, T., & Krempel, L. (2003). Exploring the dynamics of international trade by combining the comparative advantages of multivariate statistics and network analysis. Journal of Social Structures, 4 (1), 122.
Poyhonen, P. (1963). A tentative model for the flows of trade between countries. Weltwirtschaftliches Archiv, 90 (1), 93100.
Robins, G. L., Pattison, P. E., & Wasserman, S. (1999). Logit models and logistic regression for social networks III: Valued relations. Psychometrika, 64, 371394.
Rose, A. K. (2004). Do we really know that the WTO increases trade? American Economic Review, 94 (1), 98114.
Rose, A. K. (2007). Do we really know that the WTO increases trade? Reply. American Economic Review, 97(December), 20192025.
SantosSilva, J. M. C. Silva, J. M. C., & Tenreyro, S. (2006). The log of gravity. Review of Economics and Statistics, 88 (4), 641658.
Subramanian, A., & Wei, S.-J. (2007). The WTO promotes trade, strongly but unevenly. Journal of International Economics, 72 (1), 151175.
Tinbergen, J. (1962). Shaping the world economy: Suggestions for an international economic policy. New York: The Twentieth Century Fund.
Tomz, M., Goldstein, J., & Rivers, D. (2007). Do we really know that the WTO increases trade? Comment. American Economic Review, 97 (5), 20052018.
van Duijn, M., Snijders, T. A. B., & Zijlstra, B. J. H. (2004). p2: A random effects model with covariates for directed graphs. Statistica Neerlandica, 58, 234254.
Ward, M. D., & Hoff, P. D. (2007). Persistent patterns of international commerce. Journal of Peace Research, 44 (2), 157175.
Ward, M. D., & Hoff, P. D. (2008). Analyzing dependencies in geo-politics and geo-economics. In Fontanel, J. & Chatterji, M. (Eds.), Contributions to conflict management, peace economics, and development, vol. War, Peace, and Security (pp. 133160). Amsterdam: Elsevier Science.
Warner, R., Kenny, D. A., & Stoto, M. A. (1979). A new round robin analysis of variance for social interaction data. Journal of Personality and Social Psychology, 37, 17421757.
Wasserman, S., & Faust, K. (1994). Social network analysis. New York: Cambridge University Press.
Wong, G. Y. (1982). Round robin analysis of variance via maximum likelihood. Journal of the American Statistical Association, 77 (380), 714724.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Network Science
  • ISSN: 2050-1242
  • EISSN: 2050-1250
  • URL: /core/journals/network-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed