Skip to main content
×
Home
    • Aa
    • Aa

Multi-scale community organization of the human structural connectome and its relationship with resting-state functional connectivity

  • RICHARD F. BETZEL (a1), ALESSANDRA GRIFFA (a2), ANDREA AVENA-KOENIGSBERGER (a1), JOAQUÍN GOÑI (a3), JEAN-PHILIPPE THIRAN (a2), PATRIC HAGMANN (a2) and OLAF SPORNS (a4)...
Abstract
Abstract

The human connectome has been widely studied over the past decade. A principal finding is that it can be decomposed into communities of densely interconnected brain regions. Past studies have often used single-scale modularity measures in order to infer the connectome's community structure, possibly overlooking interesting structure at other organizational scales. In this report, we used the partition stability framework, which defines communities in terms of a Markov process (random walk), to infer the connectome's multi-scale community structure. Comparing the community structure to observed resting-state functional connectivity revealed communities across a broad range of scales that were closely related to functional connectivity. This result suggests a mapping between communities in structural networks, models of influence-spreading and diffusion, and brain function. It further suggests that the spread of influence among brain regions may not be limited to a single characteristic scale.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Multi-scale community organization of the human structural connectome and its relationship with resting-state functional connectivity
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Multi-scale community organization of the human structural connectome and its relationship with resting-state functional connectivity
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Multi-scale community organization of the human structural connectome and its relationship with resting-state functional connectivity
      Available formats
      ×
Copyright
The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence http://creativecommons.org/licenses/by/3.0/
References
Hide All
D. S. Bassett , M. A. Porter , N. F. Wymbs , S. T. Grafton , J. M. Carlson , & P. J. Mucha (2013). Robust detection of dynamic community structure in networks. Chaos, 23 (1), 013142.

D. S. Bassett , N. F. Wymbs , M. P. Rombach , M. A. Porter , P. J. Mucha , & S. T. Grafton (2013). Task-based core-periphery organization of human brain dynamics. PLoS Computational Biology, 9 (9), e1003171.

R. M. Birn , E. K. Molloy , T. Parker , T. B. Meier , G. R. Kirk , V. A. Nair , . . . V. Prabhakaran (2013). The effect of scan length on the reliability of resting-state fMRI connectivity estimates. Neuroimage, 83, 550558.

V. D. Blondel , J. L. Guillaume , R. Lambiotte , & E. Lefebvre (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008 (10), P10008.

E. Bullmore , & O. Sporns (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10 (3), 186198.

L. Cammoun , X. Gigandet , D. Meskaldji , J. P. Thiran , O. Sporns , K. Q. Do , . . . P. Hagmann (2012). Mapping the human connectome at multiple scales with diffusion spectrum MRI. Journal of Neuroscience Methods, 203 (2), 386397.

C. Carpineto , & G. Romano (2012). Consensus clustering based on a new probabilistic rand index with application to subtopic retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34 (12), 23152326.

Z. J. Chen , Y. He , P. Rosa-Neto , J. Germann , & A. C. Evans (2008). Revealing modular architecture of human brain structural networks by using cortical thickness from MRI. Cerebral Cortex, 18 (10), 23742381.

C. W. Chu , J. D. Holliday , & P. Willett (2012). Combining multiple classifications of chemical structures using consensus clustering. Bioorganic and Medical Chemistry, 20 (18), 53665371.

J. S. Damoiseaux , S. A. R. B. Rombouts , F. Barkhof , P. Scheltens , C. J. Stam , S. M. Smith , & C. F. Beckmann (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences, 103 (37), 1384813853.

A. Delmotte , E. W. Tate , S. Yaliraki N., & M. Barahona (2011). Protein multi-scale organization through graph partitioning and robustness analysis: Application to the myosin–myosin light chain interaction. Physical Biology, 8 (5), 055010.

D. J. Fenn , M. A. Porter , M. McDonald , S. Williams , N. F. Johnson , & N. S. Jones (2009). Dynamic communities in multichannel data: An application to the foreign exchange market during the 2007–2008 credit crisis. Chaos, 19 (3), 033119.

D. J. Fenn , M. A. Porter , P. J. Mucha , M. McDonald , S. Williams , N. F. Johnson , & N. S. Jones (2012). Dynamical clustering of exchange rates. Quantitative Finance, 12 (10), 14931520.

G. W. Flake , S. Lawrence , C. L. Giles , & F. M. Coetzee (2002). Self-organization and identification of web communities. Computer, 35 (3), 6670.

S. Fortunato , & M. Barthelemy (2007). Resolution limit in community detection. Proceedings of the National Academy of Sciences, 104 (1), 3641.

M. D. Fox , & M. E. Raichle (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8 (9), 700711.

L. C. Freeman (2004). The development of social network analysis. Vancouver: Empirical Press.

M. Girvan , & M. E. Newman (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99 (12), 78217826.

B. H. Good , Y. A. de Montjoye , & A. Clauset (2010). Performance of modularity maximization in practical contexts. Physical Review E, 81 (4), 046106.

M. D. Greicius , B. Krasnow , A. L. Reiss , & V. Menon (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences, 100 (1), 253258.

R. Guimera , & L. A. N. Amaral (2005). Cartography of complex networks: Modules and universal roles. Journal of Statistical Mechanics: Theory and Experiment, 2005 (02), P02001.

C. J. Honey , O. Sporns , L. Cammoun , X. Gigandet , J. P. Thiran , R. Meuli , & P. Hagmann (2009). Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences, 106 (6), 20352040.

P. F. Jonsson , T. Cavanna , D. Zicha , & P. A. Bates (2006). Cluster analysis of networks generated through homology: Automatic identification of important protein communities involved in cancer metastasis. BMC Bioinformatics, 7 (1), 2.

R. Lambiotte , R. Sinatra , J. C. Delvenne , T. S. Evans , M. Barahona , & V. Latora (2011). Flow graphs: Interweaving dynamics and structure. Physical Review E, 84 (1), 017102.

A. Lancichinetti , & S. Fortunato (2012). Consensus clustering in complex networks. Scientific Reports, 2, 17.

A. C. F. Lewis , N. S. Jones , M. A. Porter , & C. M. Deane (2010). The function of communities in protein interaction networks at multiple scales. BMC Systems Biology, 4, 100.

K. Murphy , R. M. Birn , D. A. Handwerker , Jones, T. B., & P. A. Bandettini (2009). The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced? Neuroimage, 44 (3), 893905.

M. E. Newman , & M. Girvan (2004). Finding and evaluating community structure in networks. Physical Review E, 69 (2), 026113.

J.-K. Onnela , D. J. Fenn , S. Reid , M. A. Porter , P. J. Mucha , M. D. Fricker , & N. S. Jones (2012). Taxonomies of networks from community structure. Physical Review E, 86 (3), 036104.

J. Reichardt , & S. Bornholdt (2006). Statistical mechanics of community detection. Physical Review E, 74 (1), 016110.

P. Ronhovde , & Z. Nussinov (2009). Multiresolution community detection for megascale networks by information-based replica correlations. Physical Review E, 80 (1), 016109.

M. Rubinov , & O. Sporns (2011). Weight-conserving characterization of complex functional brain networks. Neuroimage, 56, 20682079.

M. T. Schaub , J. C. Delvenne , S. N. Yaliraki , & M. Barahona (2012). Markov dynamics as a zooming lens for multiscale community detection: Non clique-like communities and the field-of-view limit. PloS One, 7 (2), e32210.

J. Sepulcre , M. R. Sabuncu , T. B. Yeo , H. Liu , & K. A. Johnson (2012). Stepwise connectivity of the modal cortex reveals the multimodal organization of the human brain. The Journal of Neuroscience, 32 (31), 1064910661.

S. M. Smith , P. T. Fox , K. L. Miller , D. C. Glahn , P. M. Fox , C. E. Mackay , . . . C. F. Beckmann (2009). Correspondence of the brain's functional architecture during activation and rest. Proceedings of the National Academy of Sciences, 106 (31), 1304013045.

O. Sporns , G. Tononi & R. Kötter (2005). The human connectome: A structural description of the human brain. PLoS Computational Biology, 1 (4), e42.

V. A. Traag , & J. Bruggeman (2009). Community detection in networks with positive and negative links. Physical Review E, 80 (3), 036115.

M. P. van den Heuvel , & H. E. Hulshoff Pol (2010). Exploring the brain network: A review on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 20 (8), 519534.

M. P. van den Heuvel , R. S. Kahn , J. Goñi , & O. Sporns (2012). High-cost, high-capacity backbone for global brain communication. Proceedings of the National Academy of Sciences, 109 (28), 1137211377.

M. P. van den Heuvel , & O. Sporns (2011). Rich-club organization of the human connectome. The Journal of Neuroscience, 31 (44), 1577515786.

P. E. Vértes , A. F. Alexander-Block , N. Gogtay , J. N. Giedd , J. L. Rapoport , & E. T. Bullmore (2012). Simple models of human brain functional networks. Proceedings of the National Academy of Sciences, 109 (15), 58685873.

V. J. Wedeen , R. P. Wang , J. D. Schmahmann , T. Benner , W. Y. I. Tseng , G. Dai , . . . A. J. De Crespigny (2008). Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage, 41 (4), 12671277.

K. Wu , Y. Taki , K. Sato , Y. Sassa , K. Inoue , R. Goto , . . . H. Fukuda (2011). The overlapping community structure of structural brain network in young healthy individuals. PloS One, 6 (5), e19608.

Z. Yu , H. S. Wong , & H. Wang (2007). Graph-based consensus clustering for class discovery from gene expression data. Bioinformatics, 23 (21), 28882896.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Network Science
  • ISSN: 2050-1242
  • EISSN: 2050-1250
  • URL: /core/journals/network-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
UNKNOWN
Supplementary Materials

Betzel Supplementary Material
Supplementary Material

 Unknown (514 bytes)
514 bytes
UNKNOWN
Supplementary Materials

Betzel Supplementary Material
Supplementary Material

 Unknown (247 KB)
247 KB
UNKNOWN
Supplementary Materials

Betzel Supplementary Material
Supplementary Material

 Unknown (1 KB)
1 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 2
Total number of PDF views: 482 *
Loading metrics...

Abstract views

Total abstract views: 639 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th October 2017. This data will be updated every 24 hours.