Skip to main content Accesibility Help

Portrait of Political Party Polarization1

  • JAMES MOODY (a1) and PETER J. MUCHA (a2)

To find out, we measure co-voting similarity networks in the US Senate and trace individual careers over time. Standard network visualization tools fail on dense highly clustered networks, so we used two aggregation strategies to clarify positional mobility over time. First, clusters of Senators who often vote the same way capture coalitions, and allow us to measure polarization quantitatively through modularity (Newman, 2006; Waugh et al., 2009; Poole, 2012). Second, we use role-based blockmodels (White et al., 1976) to identify role positions, identifying sets of Senators with highly similar tie patterns. Our partitioning threshold for roles is stringent, generating many roles occupied by single Senators. This combination allows us to identify movement between positions over time (specifically, we used the Kernighan–Lin improvement of a Louvain method greedy partitioning algorithm for modularity [Blondel et al., 2008], and CONCOR with an internal similarity threshold for roles; see Supplementary materials for details).

Hide All

Thanks to Joshua Medelsohn and participants of the Political Networks Conference (June 2010, Duke) for comments.

Hide All
Blondel, V. D., Guillaume, J. L., Lambiotte, R. E., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 10, 10008.
Newman, M. E. J. (2006). Finding community structure in networks using the eigenvectors of matrices. Physical Review E, 74 (3), 036104036119.
Poole, K. T. (2012). “Voteview.” Retrieved from
Waugh, A. S., Pei, L., Fowler, J. H., Mucha, P. J., & Porter, M. A. (2009). Party polarization in Congress: A Network Science Approach SSRN. Retrieved from
White, H. C., Boorman, S. A., & Breiger, R. L. (1976). Social structure from multiple Networks I. American Journal of Sociology, 81, 730780.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Network Science
  • ISSN: 2050-1242
  • EISSN: 2050-1250
  • URL: /core/journals/network-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
Type Description Title
Supplementary materials

Moody Supplementary Material
Moody Supplementary Material

 Word (163 KB)
163 KB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed