Skip to main content

Simultaneous and temporal autoregressive network models


While logistic regression models are easily accessible to researchers, when applied to network data there are unrealistic assumptions made about the dependence structure of the data. For temporal networks measured in discrete time, recent work has made good advances (Almquist & Butts, 2014), but there is still the assumption that the dyads are conditionally independent given the edge histories. This assumption can be quite strong and is sometimes difficult to justify. If time steps are rather large, one would typically expect not only the existence of temporal dependencies among the dyads across observed time points but also the existence of simultaneous dependencies affecting how the dyads of the network co-evolve. We propose a general observation-driven model for dynamic networks that overcomes this problem by modeling both the mean and the covariance structures as functions of the edge histories using a flexible autoregressive approach. This approach can be shown to fit into a generalized linear mixed model framework. We propose a visualization method that provides evidence concerning the existence of simultaneous dependence. We describe a simulation study to determine the method's performance in the presence and absence of simultaneous dependence, and we analyze both a proximity network from conference attendees and a world trade network. We also use this last data set to illustrate how simultaneous dependencies become more prominent as the time intervals become coarser.

Hide All
Airoldi, E. M., Fienberg, S. E., & Xing, E. P. (2008). Mixed membership stochastic blockmodels. Journal of Machine Learning Research, 9, 19812014.
Almquist, Z. W., & Butts, C. T. (2013). Dynamic network logistic regression: A logistic choice analysis of inter-and intra-group blog citation dynamics in the 2004 us presidential election. Political Analysis, 21 (4), 430448.
Almquist, Z. W., & Butts, C. T. (2014). Logistic network regression for scalable analysis of networks with joint edge/vertex dynamics. Sociological Methodology, 44 (1), 273321.
Anderson, T. W. (1973). Asymptotically efficient estimation of covariance matrices with linear structure. The Annals of Statistics, 1 (1), 135141.
Barbieri, K., & Keshk, O. (2012). Correlates of war project trade data set codebook, version 3.0. Retrieved April 29, 2015, from
Barbieri, K., Keshk, O. M. G., & Pollins, B. M. (2009). Trading data: Evaluating our assumptions and coding rules. Conflict Management and Peace Science, 26 (5), 471491.
Bharadwaj, H. M. (2016). Generalized linear mixed models in hearing science. The Journal of the Acoustical Society of America, 139 (4), 21012101.
Bickel, P., Choi, D., Chang, X., & Zhang, H. (2013). Asymptotic normality of maximum likelihood and its variational approximation for stochastic blockmodels. The Annals of Statistics, 41 (4), 19221943.
Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H., & White, J.-S. S. (2009). Generalized linear mixed models: A practical guide for ecology and evolution. Trends in Ecology & Evolution, 24 (3), 127135.
Chen, G., & Tsurumi, H. (2010). Probit and logit model selection. Communications in Statistics, 40 (1), 159175.
Cox, D. R. (1981). Statistical analysis of time series: Some recent developments. Scandinavian Journal of Statistics, 8 (2), 93115.
Demidenko, E. (2013). Mixed models: theory and applications with R. Hoboken, NJ: John Wiley & Sons.
Duijn, M. A. J., Snijders, T. A. B., & Zijlstra, B. J. H. (2004). p2: A random effects model with covariates for directed graphs. Statistica Neerlandica, 58 (2), 234254.
Durante, D., & Dunson, D. B. (2014). Nonparametric bayes dynamic modelling of relational data. Biometrika, 101 (4), 125138.
Eagle, N., & Pentland, A. (2006). Reality mining: Sensing complex social systems. Personal and Ubiquitous Computing, 10 (4), 255268.
Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50 (4), 9871007.
Frank, O., & Strauss, D. (1986). Markov graphs. Journal of the American Statistical Association, 81 (395), 832842.
Gbur, E. (2012). Analysis of generalized linear mixed models in the agricultural and natural resources sciences. Madison, WI: Soil Science Society of America.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2004). Bayesian data analysis (3rd ed.). Boca Raton, USA: Chapman & Hall/CRC.
Gibler, D. M. (2009). International military alliances, 1648–2008. Washington, DC: CQ Press.
Handcock, M. S., Raftery, A. E., & Tantrum, J. M. (2007). Model-based clustering for social networks. Journal of the Royal Statistical Society, Series A, 170 (2), 301354.
Hanneke, S., Fu, W., & Xing, E. P. (2010). Discrete temporal models of social networks. Electronic Journal of Statistics, 4, 585605.
Hoff, P. D. (2005). Bilinear mixed-effects models for dyadic data. Journal of the American Statistical Association, 100 (469), 286295.
Hoff, P. D., Raftery, A. E., & Handcock, M. S. (2002). Latent space approaches to social network analysis. Journal of the American Statistical Association, 97 (460), 10901098.
Holland, P. W., & Leinhardt, S. (1977). A dynamic model for social networks. Journal of Mathematical Sociology, 5 (1), 520.
Holland, P. W., & Leinhardt, S. (1981). An exponential family of probability distributions for directed graphs. Journal of the American Statistical Association, 76 (373), 3350.
Holland, P. W., Laskey, K. B., & Leinhardt, S. (1983). Stochastic blockmodels: First steps. Social Networks, 5 (2), 109137.
Hummel, R. M., Hunter, D. R., & Handcock, M. S. (2012). Improving simulation-based algorithms for fitting ERGMS. Journal of Computational and Graphical Statistics, 21 (4), 920939.
Jin, I. H., & Liang, F. (2013). Fitting social network models using varying truncation stochastic approximation mcmc algorithm. Journal of Computational and Graphical Statistics, 22 (4), 927952.
Krackhardt, D., & Handcock, M. S. (2007). Heider vs simmel: Emergent features in dynamic structures. In Airoldi, E. M., Blei, D. M., Fienberg, S. E., Goldenberg, A., Xing, E. P., & Zheng, A. X. (Eds.), Statistical network analysis: Models, issues, and new directions, ICML 2006 Workshop on Statistical Network Analysis (pp. 1427). Pittsburgh, PA: Springer.
Krivitsky, P. N., & Handcock, M. S. (2014). A separable model for dynamic networks. Journal of the Royal Statistical Society, Series B, 76 (1), 2946.
Krivitsky, P. N., Handcock, M. S., Raftery, A. E., & Hoff, P. D. (2009). Representing degree distributions, clustering, and homophily in social networks with latent cluster random effects models. Social Networks, 31 (3), 204213.
Krueger, D. C., & Montgomery, D. C. (2014). Modeling and analyzing semiconductor yield with generalized linear mixed models. Applied Stochastic Models in Business & Industry, 30 (6), 691707.
Leenders, R. Th., A. J. (1995). Models for network dynamics: A markovian framework. The Journal of Mathematical Sociology, 20 (1), 121.
Lerner, J., Indlekofer, N., Nick, B., & Brandes, U. (2013). Conditional independence in dynamic networks. Journal of Mathematical Psychology, 57 (6), 275283.
Maoz, Z., & Henderson, E. A. (2013). The world religion dataset, 1945–2010: Logic, estimates, and trends. International Interactions, 39 (3), 265291.
Okabayashi, S. (2011). Parameter estimation in social network models. Ph.D. thesis. University of Minnesota, Minneapolis, MN.
OpenAMD. (2008). AMD hope RFID data. Retrieved September 21, 2015, from
Raftery, A. E., Niu, X., Hoff, P. D., & Yeung, K. Y. (2012). Fast inference for the latent space network model using a case-control approximate likelihood. Journal of Computational and Graphical Statistics, 21 (4), 901919.
Ripley, R., Boitmanis, K., & Snijders, T. A. B. (2013). Rsiena: Siena – Simulation investigation for empirical network analysis. R package version 1.1-232.
Robins, G., & Pattison, P. (2001). Random graph models for temporal processes in social networks. Journal of Mathematical Sociology, 25 (1), 541.
Salter-Townshend, M., & Murphy, T. B. (2013). Variational bayesian inference for the latent position cluster model for network data. Computational Statistics & Data Analysis, 57 (1), 661671.
Sarkar, P., & Moore, A. W. (2005). Dynamic social network analysis using latent space models. ACM SIGKDD Explorations Newsletter, 7 (2), 3140.
Sewell, D. K., & Chen, Y. (2015). Latent space models for dynamic networks. Journal of the American Statistical Association, 110 (512), 16461657.
Shephard, N. (1995). Generalized linear autoregressions. Economics Papers 8. Economics Group, Nuffield College, University of Oxford.
Simmel, G., & Wolff, K. H. (1950). The sociology of Georg Simmel. vol. 92892. New York, NY: Simon and Schuster.
Snijders, T. A. B. (1996). Stochastic actor-oriented models for network change. Journal of Mathematical Sociology, 21 (1–2), 149172.
Snijders, T. A. B., & Nowicki, K. (1997). Estimation and prediction for stochastic blockmodels for graphs with latent block structure. Journal of Classification, 14 (1), 75100.
Vanhems, P, Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., . . . Voirin, N. (2013). Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PLoS One, 8 (9), e73970.
Wang, Y. J., & Wong, G. Y. (1987). Stochastic blockmodels for directed graphs. Journal of the American Statistical Association, 82, 819.
Warner, R. M., Kenny, D. A., & Stoto, M. (1979). A new round robin analysis of variance for social interaction data. Journal of Personality and Social Psychology, 37 (10), 17421757.
Wasserman, S. (1980). Analyzing social networks as stochastic processes. Journal of the American Statistical Association, 75 (370), 280294.
Wasserman, S., & Faust, K. (1994). Social network analysis: methods and applications. New York, NY: Cambridge University Press.
Westveld, A. H., & Hoff, P. D. (2011). A mixed effects model for longitudinal relational and network data, with applications to international trade and conflict. The Annals of Applied Statistics, 5 (2A), 843872.
Xing, E. P., Fu, W., & Song, L. (2010). A state-space mixed membership blockmodel for dynamic network tomography. The Annals of Applied Statistics, 4 (2), 535566.
Zeger, S. L., & Qaqish, B. (1988). Markov regression models for time series: A quasi-likelihood approach. Biometrics, 44 (4), 10191031.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Network Science
  • ISSN: 2050-1242
  • EISSN: 2050-1250
  • URL: /core/journals/network-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *