Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 10
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Lerman, Kristina 2016. Information Is Not a Virus, and Other Consequences of Human Cognitive Limits. Future Internet, Vol. 8, Issue. 2, p. 21.


    Zhang, Zi-Ke Liu, Chuang Zhan, Xiu-Xiu Lu, Xin Zhang, Chu-Xu and Zhang, Yi-Cheng 2016. Dynamics of information diffusion and its applications on complex networks. Physics Reports, Vol. 651, p. 1.


    Leskovec, Jure and Sosic, Rok 2016. SNAP. ACM Transactions on Intelligent Systems and Technology, Vol. 8, Issue. 1, p. 1.


    Gui, Huan Xu, Ya Bhasin, Anmol and Han, Jiawei 2015. Proceedings of the 24th International Conference on World Wide Web - WWW '15. p. 399.

    Luo, Chuan and Zeng, Daniel 2015. 2015 IEEE International Conference on Intelligence and Security Informatics (ISI). p. 138.

    Brashears, Matthew E. and Gladstone, Eric 2016. Error correction mechanisms in social networks can reduce accuracy and encourage innovation. Social Networks, Vol. 44, p. 22.


    Pastor-Escuredo, David Morales-Guzman, Alfredo Torres-Fernandez, Yolanda Bauer, Jean-Martin Wadhwa, Amit Castro-Correa, Carlos Romanoff, Liudmyla Jong Gun Lee, Rutherford, Alex Frias-Martinez, Vanessa Oliver, Nuria Frias-Martinez, Enrique and Luengo-Oroz, Miguel 2014. IEEE Global Humanitarian Technology Conference (GHTC 2014). p. 279.

    Luo, Chuan Cui, Kainan Zheng, Xiaolong and Zeng, Daniel 2014. 2014 IEEE Joint Intelligence and Security Informatics Conference. p. 68.

    Luo, Chuan Zheng, Xiaolong and Zeng, Daniel 2014. 2014 IEEE Joint Intelligence and Security Informatics Conference. p. 260.

    Phan, Nhathai Ebrahimi, Javid Kil, David Piniewski, Brigitte and Dou, Dejing 2016. Topic-Aware Physical Activity Propagation with Temporal Dynamics in a Health Social Network. ACM Transactions on Intelligent Systems and Technology, Vol. 8, Issue. 1, p. 1.


    ×

Uncovering the structure and temporal dynamics of information propagation

  • MANUEL GOMEZ RODRIGUEZ (a1), JURE LESKOVEC (a2), DAVID BALDUZZI (a3) and BERNHARD SCHÖLKOPF (a4)
  • DOI: http://dx.doi.org/10.1017/nws.2014.3
  • Published online: 03 April 2014
Abstract
Abstract

Time plays an essential role in the diffusion of information, influence, and disease over networks. In many cases we can only observe when a node is activated by a contagion—when a node learns about a piece of information, makes a decision, adopts a new behavior, or becomes infected with a disease. However, the underlying network connectivity and transmission rates between nodes are unknown. Inferring the underlying diffusion dynamics is important because it leads to new insights and enables forecasting, as well as influencing or containing information propagation. In this paper we model diffusion as a continuous temporal process occurring at different rates over a latent, unobserved network that may change over time. Given information diffusion data, we infer the edges and dynamics of the underlying network. Our model naturally imposes sparse solutions and requires no parameter tuning. We develop an efficient inference algorithm that uses stochastic convex optimization to compute online estimates of the edges and transmission rates. We evaluate our method by tracking information diffusion among 3.3 million mainstream media sites and blogs, and experiment with more than 179 million different instances of information spreading over the network in a one-year period. We apply our network inference algorithm to the top 5,000 media sites and blogs and report several interesting observations. First, information pathways for general recurrent topics are more stable across time than for on-going news events. Second, clusters of news media sites and blogs often emerge and vanish in a matter of days for on-going news events. Finally, major events, for example, large scale civil unrest as in the Libyan civil war or Syrian uprising, increase the number of information pathways among blogs, and also increase the network centrality of blogs and social media sites.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

E. Adar , & L. A. Adamic (2005). Tracking information epidemics in blogspace. In Proceedings of The 2005 IEEE/WIC/ACM International Conference on Web Intelligence (pp. 207214). Washington, DC: IEEE.

S. Aral , & D. Walker (2012). Identifying influential and susceptible members of social networks. Science, 337 (6092), 337341.

D. Blatt , A. O. Hero , & H. Gauchman (2008). A convergent incremental gradient method with a constant step size. SIAM Journal on Optimization, 18 (1), 2951.

S. P. Boyd , & L. Vandenberghe (2004). Convex optimization. Cambridge, UK: Cambridge University Press.

D. Brockmann , L. Hufnagel , & T. Geisel (2006). The scaling laws of human travel. Nature, 439 (7075), 462465.

A. Clauset , C. Moore , & M. E. J. Newman (2008). Hierarchical structure and the prediction of missing links in networks. Nature, 453 (7191), 98101.

M. Gomez-Rodriguez , J. Leskovec , & A. Krause (2010). Inferring networks of diffusion and influence. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining (pp. 10191028). ACM.

M. Gomez-Rodriguez , J. Leskovec , & A. Krause (2012). Inferring networks of diffusion and influence. ACM Transactions on Knowledge Discovery from Data, 5 (4), 21:137, ACM.

L. Hufnagel , D. Brockmann , & T. Geisel (2004). Forecast and control of epidemics in a globalized world. Proceedings of the National Academy of Sciences of the United States of America, 101 (42), 15124.

E. H. Kaplan (1989). What are the risks of risky sex? Modeling the AIDS epidemic. Operations Research, 37 (2), 198209.

T. Lappas , E. Terzi , D. Gunopulos , & H. Mannila (2010). Finding effectors in social networks. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 10591068). ACM.

J. Leskovec , L. Backstrom , & J. Kleinberg (2009). Meme-tracking and the dynamics of the news cycle. In Proceedings of the 15th ACM Sigkdd International Conference on Knowledge Discovery and Data Mining (pp. 497506). New York, NY: ACM.

D. Liben-Nowell , & J. Kleinberg (2008). Tracing the flow of information on a global scale using Internet chain-letter data. Proceedings of the National Academy of Sciences, 105 (12), 46334638.

M. Lipsitch , T. Cohen , B. Cooper , J. M. Robins , S. Ma , L. James , . . . M. Murray (2003). Transmission dynamics and control of severe acute respiratory syndrome. Science, 300 (5627), 1966.

S. Myers , J. Leskovec , & C. Zhu (2012). Information diffusion and external influence in networks. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 3341). ACM.

A. Nemirovski , A. Juditsky , G. Lan , & A. Shapiro (2009). Robust stochastic approximation approach to stochastic programming. SIAM Journal on Optimization, 19 (4), 1574.

W. K. Newey , & D. L. McFadden (1994). Large sample estimation and hypothesis testing. In R. F. Engle & D. L. McFadden (Eds.), Handbook of econometrics, Vol. IV (pp. 21112245). Amsterdam, Netherlands: Elsevier Science B.V.

B. A. Prakash , A. Beutel , R. Rosenfeld , & C. Faloutsos (2012). Winner takes all: Competing viruses or ideas on fair-play networks. In Proceedings of the 21st International Conference on World Wide Web (pp. 10371046). ACM.

H. Robbins , & S. Monro (1951). A stochastic approximation method. The Annals of Mathematical Statistics, 22 (3), 400407.

J. Wallinga , & P. Teunis (2004). Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. American Journal of Epidemiology, 160 (6), 509516.

C. Wang , J. C. Knight , & M. C. Elder (2000). On computer viral infection and the effect of immunization. In Proceedings of the 16th Annual Conference on Computer Security Applications (pp. 246256). IEEE Computer Society.

D. J. Watts , & P. S. Dodds (2007). Influentials, networks, and public opinion formation. Journal of Consumer Research, 34 (4), 441458.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Network Science
  • ISSN: 2050-1242
  • EISSN: 2050-1250
  • URL: /core/journals/network-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: