Skip to main content Accessibility help
×
Home

Intrathecal polymer-based interleukin-10* gene delivery for neuropathic pain

  • Erin D. Milligan (a1), Ryan G. Soderquist (a2), Stephanie M. Malone (a3), John H. Mahoney (a1), Travis S. Hughes (a3), Stephen J. Langer (a3), Evan M. Sloane (a1), Steven F. Maier (a1), Leslie A. Leinwand (a3), Linda R. Watkins (a1) and Melissa J. Mahoney (a2)...

Abstract

Research on communication between glia and neurons has increased in the past decade. The onset of neuropathic pain, a major clinical problem that is not resolved by available therapeutics, involves activation of spinal cord glia through the release of proinflammatory cytokines in acute animal models of neuropathic pain. Here, we demonstrate for the first time that the spinal action of the proinflammatory cytokine, interleukin 1 (IL-1) is involved in maintaining persistent (2 months) allodynia induced by chronic-constriction injury (CCI). The anti-inflammatory cytokine IL-10 can suppress proinflammatory cytokines and spinal cord glial amplification of pain. Given that IL-1 is a key mediator of neuropathic pain, developing a clinically viable means of long-term delivery of IL-10 to the spinal cord is desirable. High doses of intrathecal IL-10-gene therapy using naked plasmid DNA (free pDNA-IL-10) is effective, but the dose required limits its potential clinical utility. Here we show that intrathecal gene therapy for neuropathic pain is improved sufficiently using two, distinct synthetic polymers, poly(lactic-co-glycolic) and polyethylenimine, that substantially lower doses of pDNA-IL-10 are effective. In conclusion, synthetic polymers used as i.t. gene-delivery systems are well-tolerated and improve the long-duration efficacy of pDNA-IL-10 gene therapy.

Copyright

Corresponding author

Correspondence should be addressed to Erin D. Milligan, Department of Psychology, Campus Box 345, University of Colorado at Boulder, Boulder, CO 80309-0345, USA phone: +1 303 735 2295 fax: +1 303 492 2967 email: erin.milligan@colorado.edu

Footnotes

Hide All
*

This gene has a point mutation (F129S) as described in the Methods section.

Footnotes

References

Hide All

* This gene has a point mutation (F129S) as described in the Methods section.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed