Skip to main content

Adaptive Dimensionality-Reduction for Time-Stepping in Differential and Partial Differential Equations

  • Xing Fu (a1) and J. Nathan Kutz (a1)

A numerical time-stepping algorithm for differential or partial differential equations is proposed that adaptively modifies the dimensionality of the underlying modal basis expansion. Specifically, the method takes advantage of any underlying low-dimensional manifolds or subspaces in the system by using dimensionality-reduction techniques, such as the proper orthogonal decomposition, in order to adaptively represent the solution in the optimal basis modes. The method can provide significant computational savings for systems where low-dimensional manifolds are present since the reduction can lower the dimensionality of the underlying high-dimensional system by orders of magnitude. A comparison of the computational efficiency and error for this method are given showing the algorithm to be potentially of great value for high-dimensional dynamical systems simulations, especially where slow-manifold dynamics are known to arise. The method is envisioned to automatically take advantage of any potential computational saving associated with dimensionality-reduction, much as adaptive time-steppers automatically take advantage of large step sizes whenever possible.

Corresponding author
*Corresponding author. Email address: (J. N. Kutz)
Hide All
[1] Quarteroni, A. and Rozza, G., Reduced Order Methods for Modeling and Computational Reduction, Springer, 2014.
[2] Benner, P., Gugercin, S. and Willcox, K., A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems, SIAM Rev., 57(4) (2015), pp. 483531.
[3] Pearson, K., On lines and planes of closest fit to systems of points in space, Phil. Mag., 2 (1901), pp. 559572.
[4] Hotelling, H., Analysis of a complex of statistical variables into principal components, J. Educational Psychol., 23 (1933), pp. 498520.
[5] Karhunen, K., Über lineare Methoden in der Wahrscheinlichkeitsrechnung, Ann. Acad. Sci. Fennicae. Ser. A. I. Math.-Phys., 3(37) (1947), pp. 179.
[6] Loéve, M., Probability Theory, 4th ed., Graduate Texts in Mathematics 46, Springer-Verlag, 1978.
[7] Sirovich, L., Turbulence and the dynamics of coherent structures. I - Coherent structures, II - Symmetries and transformations, III - Dynamics and scaling, Quart. Applied Math., 45 (1987), pp. 561590.
[8] Holmes, P., Lumley, J. L. and Berkooz, G., Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge, 1998.
[9] Kutz, J. N., Data-Driven Modeling and Scientific Computing, Oxford, 2013.
[10] McCormick, S., Multigrid Methods(Frontiers in Applied Mathematics), SIAM, 1987.
[11] Engquist, B., Runborg, O. and Tsai, Y. H., Numerical Analysis of Multiscale Computations: Proceedings of a Winter Workshop at the Banff International Research Station, Lect. Notes Comp. Sci., Springer, New York, 2009.
[12] Martinsson, P. G., Rokhlin, V. and Tygert, M., A randomized algorithm for the approximation of matrices, App. Comp. Harmonic Ana., 30(1) (2011), pp. 4768.
[13] Halko, N., Martinsson, P. and Tropp, J., Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions, SIAM Rev., 53(2) (2011), pp. 217288.
[14] Halko, N., Martinsson, P. G., Shkolnisky, Y. and Tygert, M., An algorithm for the principal component analysis of large data sets, SIAM J. Sci. Comput., 33(5) (2011), pp. 25802594.
[15] Xia, J., Chandrasekaran, S., Gu, M. and Li, X. S., Fast algorithms for hierarchically semiseparable matrices, Numer. Linear Algebra Appl., 17(6) (2010), pp. 953976.
[16] Cross, M. and Hohenberg, P., Pattern formation outside of equilibrium, Rev. Modern Phys., 65 (1993), pp. 8511112.
[17] Schaeffer, H., Osher, S., Caflisch, R. and Hauck, C., Sparse dynamics for partial differential equations, Proceedings of the National Academy of Sciences of the United States of America, 110(17) (2013), pp. 66346639.
[18] Jokar, S., Mehrmann, V., Pfetsch, M., Yserentant, H., Sparse approximate solution of partial differential equations, J. Applied Numerical Mathematics archive, 60(4) (2010), pp. 452472.
[19] Williams, M., Schmid, P. and Kutz, J. N., Hybrid reduced-order integration with proper orthogonal decomposition and dynamic mode decomposition, SIAM Multiscale Model. Simul., 11(2) (2013), pp. 522544.
[20] Barrault, M., Maday, Y., Nguyen, N. C. and Patera, A. T., An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus Mathematique, 339(9) (2004), pp. 667672.
[21] Chaturantabut, S. and Sorensen, D. C., Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32(5), (2010), pp. 27372764.
[22] Amsallem, D., Zahr, M., Farhat, C., Nonlinear Model Order Reduction Based on Local Reduced-Order Bases, Int. J. Numer. Meth. Eng., 92(10) (2012), pp. 891916.
[23] Everson, R. and Sirovich, L., The Karhunen-Loéve procedure for gappy data, J. Opt. Soc. Am. A, 12(8) (1995), pp. 16571664.
[24] Wilcox, K., Unsteady flow sensing and estimation via the happy proper orthogonal decomposition, Comput. Fluids, 35(2) (2006), pp. 208226.
[25] Carlberg, K., Adaptive h-refinement for reduced-order models, Int. J. Numer. Meth. Eng., 102(5) (2015), pp. 11921210.
[26] Dychelynck, D., Vincent, F. and Cantournet, S., Multidimensional a priori hyper-reduction of mechanical models involving internal variables, Comput. Methods Appl. Mech. Engrg, 225-228(17-20) (2012), pp. 2843.
[27] Kim, T. and James, D. L., Skipping steps in deformable simulation with online model reduction, Acm Transactions on Graphics, 28(5) (2009), pp. 19.
[28] Oxberry, G., Kostova-Vassilevska, T., Arrighi, W. and Chand, K., Limited-memory adaptive snapshot selection for proper orthogonal decomposition, Int. J. Numer. Meth. Eng., 109 (2017), pp. 198217.
[29] Varshney, A., Pitchaiah, S. and Armaou, A., Feedback Control of Dissipative PDE Systems using Adaptive Model Reduction, AIChE Journal, 55(4) (2010), pp. 906-918.
[30] Trefethen, N. L. and Bau, D., Numerical Linear Algebra, SIAM, 1997.
[31] Carlberg, K., Barone, M. and Harbir, A., Galerkin v. least-squares Petrov-Galerkin projection in nonlinear model reduction, J. Comput. Phys., 26(2) (2016), pp. 2431.
[32] Homescu, C., Petzold, L., Serban, R., Error Estimation for Reduced-Order Models of Dynamical Systems, SIAM J. Numer. Anal., 43(4) (2006), pp. 16931714.
[33] Peherstorfer, B. and Willcox, K., Online adaptive model reduction for nonlinear systems via low-rank updates, SIAM J. Sci. Comput., 37(4) (2015), pp. 21232150.
[34] Baker, C., Gallivan, K. and Van Dooren, P., Low-rank incremental methods for computing dominant singular subspaces, Linear Algebra Appl., 436(8) (2012), pp. 28662888.
[35] Brand, M., Fast low-rank modifications of the thin singular value decomposition, Linear Algebra Appl., 415(1) (2006), pp. 2030.
[36] Halko, N., Martinsson, P. G. and Tropp, J., Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53(2) (2011), pp. 217288.
[37] Akhtar, I., Wang, Z., Borggaard, J. and Iliescu, T., A new closure strategy for proper orthogonal decomposition reduced-order models, J. Comput. Nonlin. Dyn., 7(3) (2012), 034503.
[38] Östh, J., Noack, B., Krajnović, S., Barros, D. and Borée, J., On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high Reynolds number flow over an Ahmed body, J. Fluid Mech., 747(3) (2014), pp. 518544.
[39] Kutz, J. N. and Sandstede, B., Theory of passive harmonic mode-locking using wave-guide arrays, Optics Express, 16(2) (2008), pp. 636650.
[40] Williams, M., Shlizerman, E. and Kutz, J. N., The multi-pulsing transition in mode-locked lasers: a low-dimensional approach using waveguide arrays, J. Opt. Soc. Am. B, 27(12) (2010), pp. 24712481.
[41] Rowley, C. W. and Marsden, J. E., Reconstruction Equations and the Karhunen-Loeve Expansion, Physica D, 2000.
[42] Kutz, J. N., Mode-Locked Soliton Lasers, SIAM Review, 2006.
[43] Ding, E., Shlizerman, E. and Kutz, J. N., Generalized master equation for high-energy passive mode-locking: The sinusoidal Ginzburg-Landau equation, IEEE J. Quantum Electron., 47(5) (2011), pp. 705714.
[44] Ding, E., Lu, K. and Kutz, J. N., Stability analysis of cavity solitons governed by the cubic-quintic Ginzburg-Landau equation, J. Physics B, 44(6) (2011), pp. 157160.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Numerical Mathematics: Theory, Methods and Applications
  • ISSN: 1004-8979
  • EISSN: 2079-7338
  • URL: /core/journals/numerical-mathematics-theory-methods-and-applications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 1
Total number of PDF views: 52 *
Loading metrics...

Abstract views

Total abstract views: 289 *
Loading metrics...

* Views captured on Cambridge Core between 12th September 2017 - 20th March 2018. This data will be updated every 24 hours.