[1]
Quarteroni, A. and Rozza, G., Reduced Order Methods for Modeling and Computational Reduction, Springer, 2014.

[2]
Benner, P., Gugercin, S. and Willcox, K., A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems, SIAM Rev., 57(4) (2015), pp. 483–531.

[3]
Pearson, K., On lines and planes of closest fit to systems of points in space, Phil. Mag., 2 (1901), pp. 559–572.

[4]
Hotelling, H., Analysis of a complex of statistical variables into principal components, J. Educational Psychol., 23 (1933), pp. 498–520.

[5]
Karhunen, K., Über lineare Methoden in der Wahrscheinlichkeitsrechnung, Ann. Acad. Sci. Fennicae. Ser. A. I. Math.-Phys., 3(37) (1947), pp. 1–79.

[6]
Loéve, M., Probability Theory, 4th ed., Graduate Texts in Mathematics 46, Springer-Verlag, 1978.

[7]
Sirovich, L., Turbulence and the dynamics of coherent structures. I - Coherent structures, II - Symmetries and transformations, III - Dynamics and scaling, Quart. Applied Math., 45 (1987), pp. 561–590.

[8]
Holmes, P., Lumley, J. L. and Berkooz, G., Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge, 1998.

[9]
Kutz, J. N., Data-Driven Modeling and Scientific Computing, Oxford, 2013.

[10]
McCormick, S., Multigrid Methods(Frontiers in Applied Mathematics), SIAM, 1987.

[11]
Engquist, B., Runborg, O. and Tsai, Y. H., Numerical Analysis of Multiscale Computations: Proceedings of a Winter Workshop at the Banff International Research Station, Lect. Notes Comp. Sci., Springer, New York, 2009.

[12]
Martinsson, P. G., Rokhlin, V. and Tygert, M., A randomized algorithm for the approximation of matrices, App. Comp. Harmonic Ana., 30(1) (2011), pp. 47–68.

[13]
Halko, N., Martinsson, P. and Tropp, J., Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions, SIAM Rev., 53(2) (2011), pp. 217–288.

[14]
Halko, N., Martinsson, P. G., Shkolnisky, Y. and Tygert, M., An algorithm for the principal component analysis of large data sets, SIAM J. Sci. Comput., 33(5) (2011), pp. 2580–2594.

[15]
Xia, J., Chandrasekaran, S., Gu, M. and Li, X. S., Fast algorithms for hierarchically semiseparable matrices, Numer. Linear Algebra Appl., 17(6) (2010), pp. 953–976.

[16]
Cross, M. and Hohenberg, P., Pattern formation outside of equilibrium, Rev. Modern Phys., 65 (1993), pp. 851–1112.

[17]
Schaeffer, H., Osher, S., Caflisch, R. and Hauck, C., Sparse dynamics for partial differential equations, Proceedings of the National Academy of Sciences of the United States of America, 110(17) (2013), pp. 6634–6639.

[18]
Jokar, S., Mehrmann, V., Pfetsch, M., Yserentant, H., Sparse approximate solution of partial differential equations, J. Applied Numerical Mathematics archive, 60(4) (2010), pp. 452–472.

[19]
Williams, M., Schmid, P. and Kutz, J. N., Hybrid reduced-order integration with proper orthogonal decomposition and dynamic mode decomposition, SIAM Multiscale Model. Simul., 11(2) (2013), pp. 522–544.

[20]
Barrault, M., Maday, Y., Nguyen, N. C. and Patera, A. T., An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus Mathematique, 339(9) (2004), pp. 667–672.

[21]
Chaturantabut, S. and Sorensen, D. C., Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32(5), (2010), pp. 2737–2764.

[22]
Amsallem, D., Zahr, M., Farhat, C., Nonlinear Model Order Reduction Based on Local Reduced-Order Bases, Int. J. Numer. Meth. Eng., 92(10) (2012), pp. 891–916.

[23]
Everson, R. and Sirovich, L., The Karhunen-Loéve procedure for gappy data, J. Opt. Soc. Am. A, 12(8) (1995), pp. 1657–1664.

[24]
Wilcox, K., Unsteady flow sensing and estimation via the happy proper orthogonal decomposition, Comput. Fluids, 35(2) (2006), pp. 208–226.

[25]
Carlberg, K., Adaptive h-refinement for reduced-order models, Int. J. Numer. Meth. Eng., 102(5) (2015), pp. 1192–1210.

[26]
Dychelynck, D., Vincent, F. and Cantournet, S., Multidimensional a priori hyper-reduction of mechanical models involving internal variables, Comput. Methods Appl. Mech. Engrg, 225-228(17-20) (2012), pp. 28–43.

[27]
Kim, T. and James, D. L., Skipping steps in deformable simulation with online model reduction, Acm Transactions on Graphics, 28(5) (2009), pp. 1–9.

[28]
Oxberry, G., Kostova-Vassilevska, T., Arrighi, W. and Chand, K., Limited-memory adaptive snapshot selection for proper orthogonal decomposition, Int. J. Numer. Meth. Eng., 109 (2017), pp. 198–217.

[29]
Varshney, A., Pitchaiah, S. and Armaou, A., Feedback Control of Dissipative PDE Systems using Adaptive Model Reduction, AIChE Journal, 55(4) (2010), pp. 906-918.

[30]
Trefethen, N. L. and Bau, D., Numerical Linear Algebra, SIAM, 1997.

[31]
Carlberg, K., Barone, M. and Harbir, A., Galerkin v. least-squares Petrov-Galerkin projection in nonlinear model reduction, J. Comput. Phys., 26(2) (2016), pp. 24–31.

[32]
Homescu, C., Petzold, L., Serban, R., Error Estimation for Reduced-Order Models of Dynamical Systems, SIAM J. Numer. Anal., 43(4) (2006), pp. 1693–1714.

[33]
Peherstorfer, B. and Willcox, K., Online adaptive model reduction for nonlinear systems via low-rank updates, SIAM J. Sci. Comput., 37(4) (2015), pp. 2123–2150.

[34]
Baker, C., Gallivan, K. and Van Dooren, P., Low-rank incremental methods for computing dominant singular subspaces, Linear Algebra Appl., 436(8) (2012), pp. 2866–2888.

[35]
Brand, M., Fast low-rank modifications of the thin singular value decomposition, Linear Algebra Appl., 415(1) (2006), pp. 20–30.

[36]
Halko, N., Martinsson, P. G. and Tropp, J., Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53(2) (2011), pp. 217–288.

[37]
Akhtar, I., Wang, Z., Borggaard, J. and Iliescu, T., A new closure strategy for proper orthogonal decomposition reduced-order models, J. Comput. Nonlin. Dyn., 7(3) (2012), 034503.

[38]
Östh, J., Noack, B., Krajnović, S., Barros, D. and Borée, J., On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high Reynolds number flow over an Ahmed body, J. Fluid Mech., 747(3) (2014), pp. 518–544.

[39]
Kutz, J. N. and Sandstede, B., Theory of passive harmonic mode-locking using wave-guide arrays, Optics Express, 16(2) (2008), pp. 636–650.

[40]
Williams, M., Shlizerman, E. and Kutz, J. N., The multi-pulsing transition in mode-locked lasers: a low-dimensional approach using waveguide arrays, J. Opt. Soc. Am. B, 27(12) (2010), pp. 2471–2481.

[41]
Rowley, C. W. and Marsden, J. E., Reconstruction Equations and the Karhunen-Loeve Expansion, Physica D, 2000.

[42]
Kutz, J. N., Mode-Locked Soliton Lasers, SIAM Review, 2006.

[43]
Ding, E., Shlizerman, E. and Kutz, J. N., Generalized master equation for high-energy passive mode-locking: The sinusoidal Ginzburg-Landau equation, IEEE J. Quantum Electron., 47(5) (2011), pp. 705–714.

[44]
Ding, E., Lu, K. and Kutz, J. N., Stability analysis of cavity solitons governed by the cubic-quintic Ginzburg-Landau equation, J. Physics B, 44(6) (2011), pp. 157–160.