[1]
Aavatsmark, I., Barkve, T., Bøe, Ø. and Mannseth, T., Discretization on unstructured grids for inhomogeneous, anisotropic media. I. Derivation of the methods, SIAM J. Sci. Comput., 19 (1998), pp. 1700–1716.

[2]
Aavatsmark, I., Barkve, T., Bøe, Ø. and Mannseth, T., Discretization on unstructured grids for inhomogeneous, anisotropic media. II. Discussion and numerical results, SIAM J. Sci. Comput., 19 (1998), pp. 1717–1736.

[3]
Ait-Ali-Yahia, D., Baruzzi, G., Habashi, W. G., Fortin, M., Dompierre, J. and Vallet, M. G., Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver-independent CFD. Part II: Structured grids, Int. J. Numer. Meth. Fluids, 39 (2002), pp. 657–673.

[4]
Bogdanov, I. I., Mourzenko, V. V. and Thovert, J. F., Effective permeability of fractured porous media in steady state flow, Water Res. Research, 39(39) (2003), pp. 257–263.

[5]
Borouchaki, H., George, P. L., Hecht, P., Laug, P. and Saletl, E., Delaunay mesh generation governed by metric specification: Part I. Algorithms, Fin. Elem. Anal. Des., 25 (1997), pp. 61–83.

[6]
Borouchaki, H., George, P. L. and Mohammadi, B., Delaunay mesh generation governed by metric specification: Part II. Applications, Fin. Elem. Anal. Des., 25 (1997), pp. 85–109.

[7]
Bossen, F. J. and Heckbert, P. S.. A pliant method for anisotropic mesh generation, In Proceedings 5th International Meshing roundtable, Sandia National Laboratories, 1996, pp. 63–74.

[8]
Brandts, J., Korotov, S., and Křížek, M., The discrete maximum principle for linear simplicial finite element approximations of a reaction-diffusion problem, Linear Algebra Appl., 429 (2008), pp. 2344–2357.

[9]
Castro-Díaz, M. J., Hecht, F., Mohammadi, B. and Pironneau, O., Anisotropic unstructured mesh adaption for flow simulations, Int. J. Numer. Meth. Fluids, 25 (1997), pp. 475–491.

[10]
Chan, T. F. and Shen, J., Non-texture inpainting by curvature driven diffusions (CDD), J. Vis. Commun. Image Rep, 12 (2000), pp. 436–449.

[11]
Chan, T. F., Shen, J., and Vese, L., Variational PDE models in image processing, Not. AMS J., 50 (2003), pp. 14–26.

[12]
Ciarlet, P. G. and Raviart, P. A., Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Engrg., 2 (1973), pp. 17–31.

[13]
Cipolla, C. L., Lolon, E. P., Erdle, J. C. and Rubin, B., *Reservoir modeling in shale-gas reservoirs*, SPE 125530, presented at the SPE Eastern Regional Meeting held in Charleston, West Virginia, 2009.

[14]
Cipolla, C. L., Lolon, E. P., Erdle, J. C. and Tathed, V., *Modeling well performance in shale-gas reservoirs*, SPE 125532, presented at the SPE/EAGE Reservoir Characterization and Simulation Conference held in Abu Dhabi, UAE, 2009.

[15]
Crumpton, P. I., Shaw, G. J. and Ware, A. F., Discretisation and multigrid solution of elliptic equations with mixed derivative terms and strongly discontinuous coefficients, J. Comput. Phys., 116 (1995), pp. 343–358.

[17]
Dompierre, J., Vallet, M. G., Bourgault, Y., Fortin, M. and Habashi, W. G.. Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver-independent CFD. Part III: Unstructured meshes, Int. J. Numer. Meth. Fluids, 39 (2002), pp. 675–702.

[18]
Drǎgǎnescu, A., Dupont, T. F. and Scott, L. R., Failure of the discrete maximum principle for an elliptic finite element problem, Math. Comp., 74(249) (2004), pp. 1–23.

[19]
Freeman, C. M., Moridis, G., Ilk, D., and Blasingame, T. A., A numerical study of performance for tight gas and shale gas reservoir systems, J. Petrol. Sci. Eng., 108 (2013), pp. 22–39.

[20]
Garimella, R. V. and Shephard, M. S., Boundary layer meshing for viscous flows in complex domain, International Meshing Roundtable, 2000, pp. 107–118.

[21]
Günter, S. and Lackner, K., A mixed implicit-explicit finite difference scheme for heat transport in magnetised plasmas, J. Comput. Phys., 228 (2009), pp. 282–293.

[22]
Günter, S., Lackner, K. and Tichmann, C., Finite element and higher order difference formulations for modelling heat transport in magnetised plasmas, J. Comput. Phys., 226 (2007), pp. 2306–2316.

[23]
Günter, S., Yu, Q., Kruger, J. and Lackner, K., Modelling of heat transport in magnetised plasmas using non-aligned coordinates, J. Comput. Phys., 209 (2005), pp. 354–370.

[24]
Habashi, W. G., Dompierre, J., Bourgault, Y., D. AIT-ALI-YAHIA, Fortin, M. and Vallet, M. G., Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver-independent CFD. Part I: General principles, Int. J. Numer. Meth. Fluids, 32 (2000), pp. 725–744.

[25]
Hecht, F., Bidimensional Anisotropic Mesh Generator, Inria Report, 1998.

[26]
Hecht, F.. New development in Freefem++, J. Numer. Math., 20(3-4) (2012), pp. 251–265.

[27]
Huang, W., Variational mesh adaptation: isotropy and equidistribution, J. Comput. Phys., 174 (2001), pp. 903–924.

[28]
Huang, W., Measuring mesh qualities and application to variational mesh adaptation, SIAM. J. Sci. Comput., 26 (2005), pp. 1643–1666.

[29]
Huang, W., Metric tensors for anisotropic mesh generation, J. Comput. Phys., 204 (2005), pp. 633–665.

[30]
Huang, W., Mathematical principles of anisotropic mesh adaptation, Comm. Comput. Phys., 1 (2006), pp. 276–310.

[31]
Huang, W., Discrete maximum principle and a Delaunay-type mesh condition for linear finite element approximations of two-dimensional anisotropic diffusion problems, Numer. Math. Theor. Meth. Appl., 4 (2011), pp. 319–334.

[32]
Huang, W., Kamenski, L. and Li, X., Anisotropic mesh adaptation for variational problems using error estimation based on hierarchical bases, Canadian Applied Mathematics Quarterly, 17(3) (2009), pp. 501–522.

[33]
Karátson, J., Korotov, S. and Křížek, M., On discrete maximum principles for nonlinear elliptic problems, Math. Comput. Simulat., 76 (2007), pp. 99–108.

[34]
Karras, D. A. and Mertzios, G. B., New PDE-based methods for image enhancement using SOM and Bayesian inference in various discretization schemes, Meas. Sci. Technol., 20 (2009), 104012.

[35]
Knupp, P. M., Algebraic mesh quality metrics for unstructured initial meshes, Fin. Elem. Anal. Des., 39 (2003), pp. 217–241.

[36]
Knupp, P. M., Introducing the target-matrix paradigm for mesh optimization via node-movement, Eng. Comput., 28 (2012), pp. 419–429.

[37]
Křížek, M. and Lin, Q., On diagonal dominance of stiffness matrices in 3d, East-West J. Numer. Math., 3 (1995), pp. 59–69.

[38]
Kuzmin, D., Shashkov, M. J. and Svyatskiy, D., A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems, J. Comput. Phys., 228 (2009), pp. 3448–3463.

[39]
Letniowski, F. W., Three-dimensional Delaunay triangulations for finite element approximations to a second-order diffusion operator, SIAM J. Sci. Stat. Comput., 13 (1992), pp. 765–770.

[40]
Li, X. and Huang, W., An anisotropic mesh adaptation method for the finite element solution of heterogeneous anisotropic diffusion problems, J. Comput. Phys., 229 (2010), pp. 8072–8094.

[41]
Li, X. and Huang, W., Maximum principle for the finite element solution of time-dependent anisotropic diffusion problems, Numer. Meth. PDEs, 29 (2013), pp. 1963–1985.

[42]
Li, X., Svyatskiy, D. and Shashkov, M., *Mesh adaptation and discrete maximum principle for 2D anisotropic diffusion problems*, LANL technical report, (2007), LA-UR 10-01227.

[43]
Lipnikov, K., Shashkov, M., Svyatskiy, D. and Vassilevski, Y., Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes, J. Comput. Phys., 227 (2007), pp. 492–512.

[44]
Liska, R. and Shashkov, M., Enforcing the discrete maximum principle for linear finite element solutions of second-order elliptic problems, Commun. Comput. Phys., 3 (2008), pp. 852–877.

[45]
Loseille, A., Metric-orthogonal anisotropic mesh generation, Procedia Engineering, 82 (2014), pp. 403–415.

[46]
Lu, C., Huang, W. and Qiu, J., Maximum principle in linear finite element approximations of anisotropic diffusion-convection-reaction problems, Numer. Math., 127 (2014), pp. 515–537.

[47]
Lunati, I. and Lee, S. H., A dual-tube model for gas dynamics in fractured nanoporous shale formations, J. Fluid Mech., 757 (2014), pp. 943–971.

[48]
Marcum, D. and Alauzet, F., Aligned metric-based anisotropic solution adaptivemesh generation, Procedia Engineering, 82 (2014), pp. 428–444.

[49]
Mi, L., Jiang, H. and Li, J., The impact of diffusion type on multiscale discrete fracture model numerical simulation for shale gas, Journal of Natural Gas Science and Engineering, 20 (2014), pp. 74–81.

[50]
Mlacnik, M. J. and Durlofsky, L. J., Unstructured grid optimization for improved monotonicity of discrete solutions of elliptic equations with highly anisotropic coefficients, J. Comput. Phys., 216 (2006), pp. 337–361.

[51]
Nishikawa, K. and Wakatani, M., Plasma Physics, Springer-Verlag Berlin Heidelberg, New York, 2000.

[52]
Olorode, O. M., Freeman, C. M., Moridis, G. J. and Blasingame, T. A., High-resolution numerical modeling of complex and irregular fracture patterns in shale gas and tight gas reservoirs, Spe Reservoir Evaluation & Engineering, 16(4) (2013), pp. 443–455.

[53]
Peraire, J., Vahdati, M., Morgan, K. and Zienkiewicz, O. C., Adaptive remeshing for compressible flow computations, J. Comput. Phys., 72 (1987), pp. 449–466.

[54]
Perona, P. and Malik, J., Scale-space and edge detection using anisotropic diffusion, IEEE T. Pattern Anal., 12 (1990), pp. 629–639.

[55]
Le Potier, C., A nonlinear finite volume scheme satisfying maximum and minimum principles for diffusion operators, Int. J. Finite Vol., 6(2) (2009), pp. 1–20.

[56]
Rubin, B., *Accurate simulation of non-darcy flow in stimulated fractured shale reservoir*, SPE 132093, presented at the SPE Western Regional Meeting held in Anaheim, California, 2010.

[57]
Sharma, P. and Hammett, G. W., Preserving monotonicity in anisotropic diffusion, J. Comput. Phys., 227 (2007), pp. 123–142.

[58]
Silin, D. and Kneafsey, T., Shale gas: nanometer-scale observations and well modelling, Journal of Canadian Petroleum Technology, 51(6) (2012), pp. 464–475.

[59]
Vu, M., Pouya, A. and Seyedi, D. M., Modelling of steady-state fluid flow in 3d fractured isotropic porous media: application to effective permeability calculation, Int. J. Numer. Anal. Meth. Geomech, 37 (2013), pp. 2257–2277.

[60]
Wang, Q., Chen, X., Jha, A. N. and Rogers, H., Natural gas from shale formation âĂŞ the evolution, evidences and challenges of shale gas revolution in united states, Renewable and Sustainable Energy Reviews, 30 (2014), pp. 1–28.

[61]
Wang, J. and Zhang, R., Maximum principle for P1-conforming finite element approximations of quasi-linear second order elliptic equations, SIAM J. Numer. Anal., 50 (2012), pp. 626–642.

[62]
Weickert, J., Anisotropic diffusion in image processing, Teubner-Verlag, Stuttgart, Germany, 16(1) (1998), pp. 272.

[63]
Xu, J. and Zikatanov, L., A monotone finite element scheme for convection-diffusion equations, Math. Comp., 69 (1999), pp. 1429–1446.

[64]
Yamakawa, S. and Shimada, K., High quality anisotropic tetrahedral mesh generation via ellipsoidal bubble packing, IMR, 2000, PP. 263–273.

[65]
Yuan, G. and Sheng, Z., Monotone finite volume schemes for diffusion equations on polygonal meshes, J. Comput. Phys., 227 (2008), pp. 6288–6312.

[66]
Zhang, Y., Zhang, X., and Shu, C. W., Maximum-principle-satisfying second order discontinuous Galerkin schemes for convection-diffusion equations on triangular meshes, J. Comput. Phys., 234 (2013), pp. 295–316.