Skip to main content
×
×
Home

Anisotropic Mesh Adaptation for 3D Anisotropic Diffusion Problems with Application to Fractured Reservoir Simulation

  • Xianping Li (a1) and Weizhang Huang (a2)
Abstract
Abstract

Anisotropic mesh adaptation is studied for linear finite element solution of 3D anisotropic diffusion problems. The 𝕄-uniform mesh approach is used, where an anisotropic adaptive mesh is generated as a uniform one in the metric specified by a tensor. In addition to mesh adaptation, preservation of the maximum principle is also studied. Some new sufficient conditions for maximum principle preservation are developed, and a mesh quality measure is defined to server as a good indicator. Four different metric tensors are investigated: one is the identity matrix, one focuses on minimizing an error bound, another one on preservation of the maximum principle, while the fourth combines both. Numerical examples show that these metric tensors serve their purposes. Particularly, the fourth leads to meshes that improve the satisfaction of the maximum principle by the finite element solution while concentrating elements in regions where the error is large. Application of the anisotropic mesh adaptation to fractured reservoir simulation in petroleum engineering is also investigated, where unphysical solutions can occur and mesh adaptation can help improving the satisfaction of the maximum principle.

Copyright
Corresponding author
*Corresponding author. Email addresses: lixianp@umkc.edu (X. P. Li), whuang@ku.edu (W. Z. Huang)
References
Hide All
[1] Aavatsmark I., Barkve T., Bøe Ø. and Mannseth T., Discretization on unstructured grids for inhomogeneous, anisotropic media. I. Derivation of the methods, SIAM J. Sci. Comput., 19 (1998), pp. 17001716.
[2] Aavatsmark I., Barkve T., Bøe Ø. and Mannseth T., Discretization on unstructured grids for inhomogeneous, anisotropic media. II. Discussion and numerical results, SIAM J. Sci. Comput., 19 (1998), pp. 17171736.
[3] Ait-Ali-Yahia D., Baruzzi G., Habashi W. G., Fortin M., Dompierre J. and Vallet M. G., Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver-independent CFD. Part II: Structured grids, Int. J. Numer. Meth. Fluids, 39 (2002), pp. 657673.
[4] Bogdanov I. I., Mourzenko V. V. and Thovert J. F., Effective permeability of fractured porous media in steady state flow, Water Res. Research, 39(39) (2003), pp. 257263.
[5] Borouchaki H., George P. L., Hecht P., Laug P. and Saletl E., Delaunay mesh generation governed by metric specification: Part I. Algorithms, Fin. Elem. Anal. Des., 25 (1997), pp. 6183.
[6] Borouchaki H., George P. L. and Mohammadi B., Delaunay mesh generation governed by metric specification: Part II. Applications, Fin. Elem. Anal. Des., 25 (1997), pp. 85109.
[7] Bossen F. J. and Heckbert P. S.. A pliant method for anisotropic mesh generation, In Proceedings 5th International Meshing roundtable, Sandia National Laboratories, 1996, pp. 6374.
[8] Brandts J., Korotov S., and Křížek M., The discrete maximum principle for linear simplicial finite element approximations of a reaction-diffusion problem, Linear Algebra Appl., 429 (2008), pp. 23442357.
[9] Castro-Díaz M. J., Hecht F., Mohammadi B. and Pironneau O., Anisotropic unstructured mesh adaption for flow simulations, Int. J. Numer. Meth. Fluids, 25 (1997), pp. 475491.
[10] Chan T. F. and Shen J., Non-texture inpainting by curvature driven diffusions (CDD), J. Vis. Commun. Image Rep, 12 (2000), pp. 436449.
[11] Chan T. F., Shen J., and Vese L., Variational PDE models in image processing, Not. AMS J., 50 (2003), pp. 1426.
[12] Ciarlet P. G. and Raviart P. A., Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Engrg., 2 (1973), pp. 1731.
[13] Cipolla C. L., Lolon E. P., Erdle J. C. and Rubin B., Reservoir modeling in shale-gas reservoirs, SPE 125530, presented at the SPE Eastern Regional Meeting held in Charleston, West Virginia, 2009.
[14] Cipolla C. L., Lolon E. P., Erdle J. C. and Tathed V., Modeling well performance in shale-gas reservoirs, SPE 125532, presented at the SPE/EAGE Reservoir Characterization and Simulation Conference held in Abu Dhabi, UAE, 2009.
[15] Crumpton P. I., Shaw G. J. and Ware A. F., Discretisation and multigrid solution of elliptic equations with mixed derivative terms and strongly discontinuous coefficients, J. Comput. Phys., 116 (1995), pp. 343358.
[16] Dobrzynski C. and Frey P., Anisotropic Tetrahedral Remesher/Moving Mesh Generation software, available at: http://www.math.u-bordeaux1.fr/~dobrzyns/logiciels/mmg3d.php, 2012.
[17] Dompierre J., Vallet M. G., Bourgault Y., Fortin M. and Habashi W. G.. Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver-independent CFD. Part III: Unstructured meshes, Int. J. Numer. Meth. Fluids, 39 (2002), pp. 675702.
[18] Drǎgǎnescu A., Dupont T. F. and Scott L. R., Failure of the discrete maximum principle for an elliptic finite element problem, Math. Comp., 74(249) (2004), pp. 123.
[19] Freeman C. M., Moridis G., Ilk D., and Blasingame T. A., A numerical study of performance for tight gas and shale gas reservoir systems, J. Petrol. Sci. Eng., 108 (2013), pp. 2239.
[20] Garimella R. V. and Shephard M. S., Boundary layer meshing for viscous flows in complex domain, International Meshing Roundtable, 2000, pp. 107118.
[21] Günter S. and Lackner K., A mixed implicit-explicit finite difference scheme for heat transport in magnetised plasmas, J. Comput. Phys., 228 (2009), pp. 282293.
[22] Günter S., Lackner K. and Tichmann C., Finite element and higher order difference formulations for modelling heat transport in magnetised plasmas, J. Comput. Phys., 226 (2007), pp. 23062316.
[23] Günter S., Yu Q., Kruger J. and Lackner K., Modelling of heat transport in magnetised plasmas using non-aligned coordinates, J. Comput. Phys., 209 (2005), pp. 354370.
[24] Habashi W. G., Dompierre J., Bourgault Y., D. AIT-ALI-YAHIA, Fortin M. and Vallet M. G., Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver-independent CFD. Part I: General principles, Int. J. Numer. Meth. Fluids, 32 (2000), pp. 725744.
[25] Hecht F., Bidimensional Anisotropic Mesh Generator, Inria Report, 1998.
[26] Hecht F.. New development in Freefem++, J. Numer. Math., 20(3-4) (2012), pp. 251265.
[27] Huang W., Variational mesh adaptation: isotropy and equidistribution, J. Comput. Phys., 174 (2001), pp. 903924.
[28] Huang W., Measuring mesh qualities and application to variational mesh adaptation, SIAM. J. Sci. Comput., 26 (2005), pp. 16431666.
[29] Huang W., Metric tensors for anisotropic mesh generation, J. Comput. Phys., 204 (2005), pp. 633665.
[30] Huang W., Mathematical principles of anisotropic mesh adaptation, Comm. Comput. Phys., 1 (2006), pp. 276310.
[31] Huang W., Discrete maximum principle and a Delaunay-type mesh condition for linear finite element approximations of two-dimensional anisotropic diffusion problems, Numer. Math. Theor. Meth. Appl., 4 (2011), pp. 319334.
[32] Huang W., Kamenski L. and Li X., Anisotropic mesh adaptation for variational problems using error estimation based on hierarchical bases, Canadian Applied Mathematics Quarterly, 17(3) (2009), pp. 501522.
[33] Karátson J., Korotov S. and Křížek M., On discrete maximum principles for nonlinear elliptic problems, Math. Comput. Simulat., 76 (2007), pp. 99108.
[34] Karras D. A. and Mertzios G. B., New PDE-based methods for image enhancement using SOM and Bayesian inference in various discretization schemes, Meas. Sci. Technol., 20 (2009), 104012.
[35] Knupp P. M., Algebraic mesh quality metrics for unstructured initial meshes, Fin. Elem. Anal. Des., 39 (2003), pp. 217241.
[36] Knupp P. M., Introducing the target-matrix paradigm for mesh optimization via node-movement, Eng. Comput., 28 (2012), pp. 419429.
[37] Křížek M. and Lin Q., On diagonal dominance of stiffness matrices in 3d, East-West J. Numer. Math., 3 (1995), pp. 5969.
[38] Kuzmin D., Shashkov M. J. and Svyatskiy D., A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems, J. Comput. Phys., 228 (2009), pp. 34483463.
[39] Letniowski F. W., Three-dimensional Delaunay triangulations for finite element approximations to a second-order diffusion operator, SIAM J. Sci. Stat. Comput., 13 (1992), pp. 765770.
[40] Li X. and Huang W., An anisotropic mesh adaptation method for the finite element solution of heterogeneous anisotropic diffusion problems, J. Comput. Phys., 229 (2010), pp. 80728094.
[41] Li X. and Huang W., Maximum principle for the finite element solution of time-dependent anisotropic diffusion problems, Numer. Meth. PDEs, 29 (2013), pp. 19631985.
[42] Li X., Svyatskiy D. and Shashkov M., Mesh adaptation and discrete maximum principle for 2D anisotropic diffusion problems, LANL technical report, (2007), LA-UR 10-01227.
[43] Lipnikov K., Shashkov M., Svyatskiy D. and Vassilevski Y., Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes, J. Comput. Phys., 227 (2007), pp. 492512.
[44] Liska R. and Shashkov M., Enforcing the discrete maximum principle for linear finite element solutions of second-order elliptic problems, Commun. Comput. Phys., 3 (2008), pp. 852877.
[45] Loseille A., Metric-orthogonal anisotropic mesh generation, Procedia Engineering, 82 (2014), pp. 403415.
[46] Lu C., Huang W. and Qiu J., Maximum principle in linear finite element approximations of anisotropic diffusion-convection-reaction problems, Numer. Math., 127 (2014), pp. 515537.
[47] Lunati I. and Lee S. H., A dual-tube model for gas dynamics in fractured nanoporous shale formations, J. Fluid Mech., 757 (2014), pp. 943971.
[48] Marcum D. and Alauzet F., Aligned metric-based anisotropic solution adaptivemesh generation, Procedia Engineering, 82 (2014), pp. 428444.
[49] Mi L., Jiang H. and Li J., The impact of diffusion type on multiscale discrete fracture model numerical simulation for shale gas, Journal of Natural Gas Science and Engineering, 20 (2014), pp. 7481.
[50] Mlacnik M. J. and Durlofsky L. J., Unstructured grid optimization for improved monotonicity of discrete solutions of elliptic equations with highly anisotropic coefficients, J. Comput. Phys., 216 (2006), pp. 337361.
[51] Nishikawa K. and Wakatani M., Plasma Physics, Springer-Verlag Berlin Heidelberg, New York, 2000.
[52] Olorode O. M., Freeman C. M., Moridis G. J. and Blasingame T. A., High-resolution numerical modeling of complex and irregular fracture patterns in shale gas and tight gas reservoirs, Spe Reservoir Evaluation & Engineering, 16(4) (2013), pp. 443455.
[53] Peraire J., Vahdati M., Morgan K. and Zienkiewicz O. C., Adaptive remeshing for compressible flow computations, J. Comput. Phys., 72 (1987), pp. 449466.
[54] Perona P. and Malik J., Scale-space and edge detection using anisotropic diffusion, IEEE T. Pattern Anal., 12 (1990), pp. 629639.
[55] Le Potier C., A nonlinear finite volume scheme satisfying maximum and minimum principles for diffusion operators, Int. J. Finite Vol., 6(2) (2009), pp. 120.
[56] Rubin B., Accurate simulation of non-darcy flow in stimulated fractured shale reservoir, SPE 132093, presented at the SPE Western Regional Meeting held in Anaheim, California, 2010.
[57] Sharma P. and Hammett G. W., Preserving monotonicity in anisotropic diffusion, J. Comput. Phys., 227 (2007), pp. 123142.
[58] Silin D. and Kneafsey T., Shale gas: nanometer-scale observations and well modelling, Journal of Canadian Petroleum Technology, 51(6) (2012), pp. 464475.
[59] Vu M., Pouya A. and Seyedi D. M., Modelling of steady-state fluid flow in 3d fractured isotropic porous media: application to effective permeability calculation, Int. J. Numer. Anal. Meth. Geomech, 37 (2013), pp. 22572277.
[60] Wang Q., Chen X., Jha A. N. and Rogers H., Natural gas from shale formation âĂŞ the evolution, evidences and challenges of shale gas revolution in united states, Renewable and Sustainable Energy Reviews, 30 (2014), pp. 128.
[61] Wang J. and Zhang R., Maximum principle for P1-conforming finite element approximations of quasi-linear second order elliptic equations, SIAM J. Numer. Anal., 50 (2012), pp. 626642.
[62] Weickert J., Anisotropic diffusion in image processing, Teubner-Verlag, Stuttgart, Germany, 16(1) (1998), pp. 272.
[63] Xu J. and Zikatanov L., A monotone finite element scheme for convection-diffusion equations, Math. Comp., 69 (1999), pp. 14291446.
[64] Yamakawa S. and Shimada K., High quality anisotropic tetrahedral mesh generation via ellipsoidal bubble packing, IMR, 2000, PP. 263273.
[65] Yuan G. and Sheng Z., Monotone finite volume schemes for diffusion equations on polygonal meshes, J. Comput. Phys., 227 (2008), pp. 62886312.
[66] Zhang Y., Zhang X., and Shu C. W., Maximum-principle-satisfying second order discontinuous Galerkin schemes for convection-diffusion equations on triangular meshes, J. Comput. Phys., 234 (2013), pp. 295316.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Numerical Mathematics: Theory, Methods and Applications
  • ISSN: 1004-8979
  • EISSN: 2079-7338
  • URL: /core/journals/numerical-mathematics-theory-methods-and-applications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 2
Total number of PDF views: 24 *
Loading metrics...

Abstract views

Total abstract views: 145 *
Loading metrics...

* Views captured on Cambridge Core between 12th September 2017 - 19th February 2018. This data will be updated every 24 hours.