[1]
Allasia G., and Bracco C., Multivariate Hermite-Birkhoff interpolation by a class of cardinal basis function, Appl. Math. Comput., vol. 218 (2012), pp. 9248–9260.

[2]
Bailey B. A., Multivariate polynomial interpolation and sampling in Paley-Wiener spaces, J. Approx. Theory, vol. 164 (2012), pp. 460–487.

[3]
Chai J., Lei N., Li Y., and Xia P., The proper interpolation space for multivariate Birkhoff interpolation, J. Comput. Appl. Math., vol. 235 (2011), pp. 3207–3214.

[4]
Cui K., and Lei N., Stable monomial basis for multivariate Birkhoff interpolation problems, J. Comput. Appl. Math., vol. 277 (2015), pp. 162–170.

[5]
Dyn N., and Floater M. S., Multivariate polynomial interpolation on lower sets, J. Approx. Theory, vol. 177 (2014), pp. 34–42.

[6]
Gasca M., Sauer T., On the history of multivariate polynomial interpolation, J. Comput. and Appl. Math., vol. 122 (2000), pp. 23–35.

[7]
Lai M. J., Convex preserving scattered data interpolation using bivariate C^{1} cubic splines, J. Comput. Appl. Math., vol. 119 (2000), pp. 249–258.

[8]
Li C. J., and Wang R. H.,, Bivariate cubic spline space and bivariate cubic NURBS surfaces, Proceedings of Geometric Modeling and Processing 2004, IEEE Computer Society Pressvol, pp. 115–123.

[9]
Madych W. R., An estimate for multivariate interpolation II, J. Approx. Theory, vol. 142 (2006), pp. 116–128.

[10]
Mazroui A., Sbibih D., and Tijini A., Recursive computation of bivariate Hermite spline interpolants, Appl. Numer. Math., vol. 57 (2007), pp. 962–973.

[11]
Qian J., Wang F., On the approximation of the derivatives of spline quasi-interpolation in cubic spline space
, Numer. Math. Theor. Meth. Appl. vol., 7(1) (2014), pp. 1–22.
[12]
Qian J., Wang R. H., Li C. J., The bases of the Non-uniform cubic spline space
, Numer. Math. Theor. Meth. Appl. vol.
5(4) (2012), pp. 635–652.
[13]
Qian J., Wang R. H., Zhu C. G., Wang F., On spline quasi-interpolation in cubic spline space
, Sci Sin Math, vol. 44(7) (2014), pp. 769–778, (in Chinese).
[14]
Salzer H.E., Some new divided difference algorithm for two variables, in: Langer R.E. (Ed.) On Numerical Approximation, 1959.

[15]
Sauer T., Numerical Analysis, China Machine Press, Beijing, 2012.

[16]
Wang R. H., Numerical Approximation, Beijing, High Education Press, 1999.

[17]
Wang R. H., and Li C. J., Bivariate quartic spline spaces and quasi-interpolation operators, J. Comput. and Appl. Math., vol. 190, (2006), pp. 325–338.

[18]
Wang R. H., Qian J., On branched continued fractions rational interpolation over pyramid-typed grids, Numer. Algor., vol. 54 (2010), pp. 47–72.

[19]
Wang R. H., Qian J., Bivariate polynomial and continued fraction interpolation over orthotriples, Applied Mathematics and Computation, vol. 217 (2011), pp. 7620–7635.

[20]
Wang R. H., Shi X. Q., Luo Z. X., and Su Z. X., Multivariate Spline Functions and Their Applications, Science Press/Kluwer Academic Publishers, Beijing, New York, Dordrecht, Boston, London, 2001.

[21]
Wendland H., Scattered Data Approximation, Cambridge University Press, 2005.

[22]
Zhou T. H., and Lai M. J., Scattered data interpolation by bivariate splines with higher approximation order, J. Comput. Appl. Math., vol. 242 (2013), pp. 125–140.

[23]
Zhu C. G., and Wang R. H., Lagrange interpolation by bivariate splines on cross-cut partitions, J. Comp. Appl. Math., vol. 195 (2006), pp. 326–340.