[1]
Bandle, C. and Brunner, H., Blow-up in diffusion equation: a survey, J. Comput. Appl. Math., 97 (1998), pp. 2–22.

[2]
Bellout, H., Blow-up of solutions of parabolic equations with nonlinear memory, J. Differential Equations, 70 (1987), pp. 42–68.

[3]
Blanchard, D. and Ghidouche, H., A nonlinear system for irreversible phase changes, European J. Appl. Math., 1 (1990), pp. 91–100.

[4]
Brunner, H., Li, H. and Wu, X., Numerical solution of blow-up problems for nonlinear wave equations on unbounded domains, Commun. Comput. Phys., 14 (2013), pp. 574–598.

[5]
Brunner, H., Wu, X., Zhang, J., Computational solution of blow-up problems for semi-linear parabolic PDEs on unbounded domains, SIAM J. Sci. Comput., 31 (2010), pp. 4478–4496.

[6]
Brunner, H. and Yang, Z., Blow-up behavior of Hammerstein-type Volterra integral equations, J. Integral Equations Appl., 24 (2012), pp. 487–512.

[7]
Cho, C., A finite difference scheme for blow-up solutions of nonlinear wave equations, Numer. Math. Theor. Meth. Appl., 3 (2010), pp. 475–498.

[8]
Du, L., Mu, C. and Xiang, Z., Global existence and blow-up to a reaction-diffusion system with nonlinear memory, Commun. Pure Appl. Anal., 4 (2005), pp. 721–733.

[9]
Engler, H., On some parabolic integro-differential equations: existence and asymptotics of solutions, In: Proceedings of the international conference on Equadiff 1982, Würzburg, Lecture notes in mathematics, 1017 (1983), pp. 161–167.

[10]
Fujita, H., On the blowing up of solutions of the Cauchy problem for u_{t} = Δu+u^{l+α}
, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 13 (1966), pp. 109–124.

[11]
Habetler, G. T. and Schiffman, R. L., A finite difference method for analyzing the compression of poro-viscoelastic media, Computing, 6 (1970), pp. 342–348.

[12]
Hale, J. K., Theory of Functional Differential Equations, Springer, New York, 1977.

[13]
Hirata, D., Blow-up for a class of semilinear integro-differential equations of parabolic type, Math. Meth. Appl. Sci., 22 (1999), pp. 1087–1100.

[14]
Hu, B., Blow-up Theories for Semilinear Parabolic Equations, Lecture Notes in Mathematics, Springer, Heidelberg, 2011.

[15]
Kastenberg, W. E., Space dependent reactor kinetics with positive feed-back, Nukleonik, 11 (1968), pp. 126–130.

[16]
Khozanov, A., Parabolic equations with nonlocal nonlinear source, Siberian Math. J., 35 (1994), pp. 545–556.

[17]
Kirk, C. M. and Roberts, C. A., A review of quenching results in the context of nonlinear Volterra integral equations, Dyn. Contin. Discrete Impuls. Syst, Ser. A Math. Anal., 10 (2003), pp. 343–356.

[18]
Levine, H. A., The role of critical exponents in blowup theorems, SIAM Rev., 32 (1990), pp. 262–288.

[19]
Li, Y. X. and Xie, C. H., Blow-up for semilinear parabolic equations with nonlinear memory, Z. Angew. Math. Phys., 55 (2004), pp. 15–27.

[20]
Liu, M. Z., Yang, Z. W. and Hu, G. D., Asymptotic stability of numerical methods with constant stepsize for pantograph equations, BIT, 45 (2005), pp. 743–759.

[21]
Ma, J. T., Blow-up solutions of nonlinear Volterra integro-differential equations, Math. Comput. Modelling, 54 (2011), pp. 2551–2559.

[22]
Małolepszy, T. and Okrasiński, W., Blow-up conditions for nonlinear Volterra integral equations with power nonlinearity, Appl. Math. Lett., 21 (2008), pp. 307–312.

[23]
Meier, P., Blow up of solutions of semilinear parabolic differential equations, Z. Angew. Math. Phys., 39 (1988), pp. 135–149.

[24]
Meier, P., On the critical exponent for reaction-diffusion equations, Arch. Rational Mech. Anal., 109 (1990), pp. 63–71.

[25]
Miller, R. K., Nonlinear Volterra integral equations, J. London Math. Soc., 217(3) (1971), pp. 503–510.

[26]
Mydlarczyk, W., The blow-up solutions of integral equations, Colloq. Math., 79 (1999), pp. 147–156.

[27]
Olmstead, W., Ignition of a combustible half space, SIAM J. Appl. Math., 43 (1983), pp. 1–15.

[28]
Pachpatte, B. G., On a nonlinear diffusion system arising in reactor dynamics, J. Math. Anal. Appl., 94 (1983), pp. 501–508.

[29]
Pao, C. V., Solution of a nonlinear integrodifferential system arising in nuclear reactor dynamics, J. Math. Anal. Appl., 48 (1974), pp. 470–561.

[30]
Pao, C. V., Bifurcation analysis of a nonlinear diffusion system in reactor dynamics, Appl. Anal., 9 (1979), pp. 107–125.

[31]
Ronald, H., Huang, W. and Zegeling, P., A numerical study of blowup in the harmonic map heat flow using the MMPDE moving mesh method, Numer. Math. Theor. Meth. Appl., 6 (2013), pp. 364–383.

[32]
Roberts, C. A., Lasseigne, D. G. and Olmstead, W. E., Volterra equations which model explosion in a diffusive medium, J. Integral Equations Appl., 5 (1993), pp. 531–546.

[33]
Roberts, C. A., Recent results on blow-up and quenching for nonlinear Volterra equations, J. Comput. Appl. Math., 205 (2007), pp. 736–743.

[34]
Stimming, H., Numerical calculation of monotonicity properties of the blow-up time of NLS, Commun. Comput. Phys., 5 (2009), pp. 745–759.

[35]
Souplet, P., Blow-up in nonlocal reaction-diffusion equations, SIAM J. Math. Anal., 29 (1998), pp. 1301–1334.

[36]
Souplet, P., Monotonicity of solutions and blow-up in semilinear parabolic equations with nonlinear memory, Z. Angew. Math. Phys., 55 (2004), pp. 28–31.

[37]
Souplet, P., Uniform blow-up profilr and boundary behaviour for a non-local reaction-diffusion equation with critical damping, Math. Methods Appl. Sci., 27 (2004), pp. 1819–1829.

[38]
Yamada, Y., On a certain class of semilinear Volterra diffusion equations, J. Math. Anal. Appl., 88 (1982), pp. 433–457.

[39]
Yamada, Y., Asymptotic stability for some systems of semilinear Volterra diffusion equations, J. Differ. Equations, 52 (1984), pp. 295–326.

[40]
Yang, Z., Zhang, J. and Zhao, C., *Numerical blow-up analysis of linearly implicit Euler method for nonlinear parabolic integro-differential equations*, submitted, 2017.

[41]
Zhang, J., Han, H., Brunner, H., Numerical blow-up of semi-linear parabolic PDEs on unbounded domains in ℝ^{2}
, J. Sci. Comput., 49 (2011), pp. 367–382.

[42]
Zhou, J., Mu, C. and Fan, M., Global existence and blow-up to a degenerate reaction–diffusion system with nonlinear memory, Nonlinear Anal.-Real., 9 (2008), pp. 1518–1534.