Skip to main content

Convergence Analysis of a Block-by-Block Method for Fractional Differential Equations

  • Jianfei Huang (a1), Yifa Tang (a1) and Luis Vázquez (a2)

The block-by-block method, proposed by Linz for a kind of Volterra integral equations with nonsingular kernels, and extended by Kumar and Agrawal to a class of initial value problems of fractional differential equations (FDEs) with Caputo derivatives, is an efficient and stable scheme. We analytically prove and numerically verify that this method is convergent with order at least 3 for any fractional order index α > 0.

Corresponding author
Corresponding author.Email
Corresponding author.Email
Corresponding author.Email
Hide All
[1]Baeumer, B., Meerschaert, M. M., Benson, D. A. and Wheatcraft, S. W., Subordinated advection-dispersion equation for contaminant transport, Water Resour. Res., 37 (2001), pp. 15431550.
[2]Bagley, R. L. and Calico, R. A., Fractional order state equations for the control of viscoelastically damped structures, J. Guid. Contr. Dyn., 14 (1991), pp. 304311.
[3]Chang, F.-X., Chen, J. and Huang, W., Anomalous diffusion and fractional advection-diffusion equation, Chin. Phys. Soc., 54 (2005), pp. 11131117.
[4]Dison, J. and Mekee, S., Weakly singular discrete Gronwall inequalities, Z. Angew. Math. Mech., 66 (1986), pp. 535544.
[5]Diethelm, K., Ford, N. J. and Freed, A. D., A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam., 29 (2002), pp. 322.
[6]Diethelm, K. and Ford, N. J., Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), pp. 220248.
[7]Diethelm, K., Ford, N. J. and Freed, A. D., Deailed error analysis for a fractional Adams method, Numer. Algorithms, 36 (2004), pp. 3152.
[8]Gorenflo, R., Mainardi, F., Scalas, E. and Raberto, M., Fractional calculus and continuous-time finace. III, The diffusion limit. Mathematical finance, Trends in Math., Birkhuser, Basel, 2001.
[9]Kumar, P. and Agrawal, O.P., An approximate method for numerical solution of fractional differential equations, Singal Process., 86 (2006), pp. 26022610.
[10]Lubich, Ch., Discretized fractional calculus, SIAM J. Math. Anal., vol. 17, no. 3, (1986), pp. 704719.
[11]Linz, P., An method for nonlinear solving Volterra integral equations of the second kind, Math. Comput., vol. 23, no. 107, (1969), pp. 595599.
[12]Lin, R. and Liu, F., Fractional high order methods for the nonlinear fractional ordinary differential equation, Nonlinear Dynam., 66 (2007), pp. 856869.
[13]Miller, K. and Ross, B., An introduction to the fractional calculus and fractional differential equations, Wiley, New York, 1993.
[14]Oldham, K. B. and Spanier, J., The fractional calculus Academic Press, New York, 1974.
[15]Podlubny, I., Fractional differential equations Academic Press, New York, 1999.
[16]Raberto, M., Scalas, E. and Mainardi, F., Waiting-times and returns in high-frequency financial data: an empirical study, Physica A, 314 (2002), pp. 749755.
[17]Sabatelli, L., Keating, S., Dudley, J. and Richmond, P., Waiting time distributions in financial markets, Eur. Phys. J. B, 27 (2002), pp. 273275.
[18]Schumer, R., Benson, D. A., Meerschaert, M. M. and Baeumer, B., Multiscaling fractional advection-dispersion equations and their solutions, Water Resour. Res., 39 (2003), pp. 10221032.
[19]Vázquez, L., From Newton’s equation to fractional diffusion and wave equations, Adv. Differ. Equ., Article ID 169421 (2011), 13 pages.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Numerical Mathematics: Theory, Methods and Applications
  • ISSN: 1004-8979
  • EISSN: 2079-7338
  • URL: /core/journals/numerical-mathematics-theory-methods-and-applications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 96 *
Loading metrics...

Abstract views

Total abstract views: 90 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th March 2018. This data will be updated every 24 hours.