Skip to main content
    • Aa
    • Aa

Defects Around a Spherical Particle in Cholesteric Liquid Crystals

  • Yu Tong (a1), Yiwei Wang (a1) and Pingwen Zhang (a1)

We investigate the defect structures around a spherical colloidal particle in a cholesteric liquid crystal using spectral method, which is specially devised to cope with the inhomogeneity of the cholesteric at infinity. We pay particular attention to the cholesteric counterparts of nematic metastable configurations. When the spherical colloidal particle imposes strong homeotropic anchoring on its surface, besides the well-known twisted Saturn ring, we find another metastable defect configuration, which corresponds to the dipole in a nematic, without outside confinement. This configuration is energetically preferable to the twisted Saturn ring when the particle size is large compared to the nematic coherence length and small compared to the cholesteric pitch. When the colloidal particle imposes strong planar anchoring, we find the cholesteric twist can result in a split of the defect core on the particle surface similar to that found in a nematic liquid crystal by lowering temperature or increasing particle size.

Corresponding author
*Corresponding author. Email addresses: (Y. Tong), (Y. W. Wang), (P. W. Zhang)
Hide All
[1] J. M. Ball and A. Zarnescu , Orientability and energy minimization in liquid crystal models, Arch. Ration. Mech. Anal., 202 (2011), pp. 493535.

[3] A. Callan-Jones , R. A. Pelcovits , V. Slavin , S. Zhang , D. Laidlaw and G. Loriot , Simulation and visualization of topological defects in nematic liquid crystals, Phys. Rev. E, 74 (2006), pp. 061701.

[5] J. L. Ericksen , Liquid crystals with variable degree of orientation, Arch. Ration. Mech. Anal., 113 (1991), pp. 97120.

[6] G. Foffano , J. Lintuvuori , A. Tiribocchi , and D. Marenduzzo , The dynamics of colloidal intrusions in liquid crystals: a simulation perspective, Liq. Cryst. Rev., 2 (2014), pp. 127.

[7] J.-B. Fournier and P. Galatola , Modeling planar degenerate wetting and anchoring in nematic liquid crystals, Europhys. Lett., 72 (2005), pp. 403.

[8] J. Fukuda and S. Žumer , Cholesteric blue phases: effect of strong confinement, Liq. Cryst., 37 (2010), pp. 875882.

[9] J.-I. Fukuda , Liquid crystal colloids: a novel composite material based on liquid crystals, J. Phys. Soc. Japan, 78 (2009), pp. 041003.

[10] J.-I. Fukuda , M. Yoneya and H. Yokoyama , Nematic liquid crystal around a spherical particle: Investigation of the defect structure and its stability using adaptive mesh refinement, Euro. Phys. J. E, 13 (2004), pp. 8798.

[11] H. Grebel , R. Hornreich and S. Shtrikman , Landau theory of cholesteric blue phases, Phys. Rev. A, 28 (1983), pp. 1114.

[12] J. Han , Y. Luo , W. Wang , P. Zhang and Z. Zhang , From microscopic theory to macroscopic theory: a systematic study on modeling for liquid crystals, Arch. Ration. Mech. Anal., 215 (2015), pp. 741809.

[13] R. Hornreich and S. Shtrikman , Landau theory of twist-induced biaxiality in cholesteric liquid crystals, Phys. Rev. A, 29 (1984), pp. 3444.

[14] Y. Hu , Y. Qu and P. Zhang , On the disclination lines of nematic liquid crystals, Commun. Comput. Phys., 19 (2016), pp. 354379.

[16] J. Lintuvuori , D. Marenduzzo , K. Stratford and M. Cates , Colloids in liquid crystals: a lattice boltzmann study, J. Mater. Chem., 20 (2010), pp. 1054710552.

[17] J. Lintuvuori , K. Stratford , M. Cates and D. Marenduzzo , Colloids in cholesterics: size-dependent defects and non-stokesian microrheology, Phys. Rev. Lett., 105 (2010), pp. 178302.

[18] L. Longa , D. Monselesan and H.-R. Trebin , Phase diagrams of cholesteric liquid crystals obtained with a generalized landau-de gennes theory, Liq. Cryst., 5 (1989), pp. 889898.

[19] T. Lubensky , D. Pettey , N. Currier and H. Stark , Topological defects and interactions in nematic emulsions, Phys. Rev. E, 57 (1998), pp. 610.

[20] A. Majumdar , Equilibrium order parameters of nematic liquid crystals in the landau-de gennes theory, Euro. J. Appl. Math., 21 (2010), pp. 181203.

[21] A. Majumdar and A. Zarnescu , Landau–de gennes theory of nematic liquid crystals: the oseen–frank limit and beyond, Arch. Ration. Mech. Anal., 196 (2010), pp. 227280.

[22] M. Melle , S. Schlotthauer , C. K. Hall , E. Diaz-Herrera , and M. Schoen , Disclination lines at homogeneous and heterogeneous colloids immersed in a chiral liquid crystal, Soft Matter, 10 (2014), pp. 54895502.

[23] S. Mkaddem and E. C. Gartland , Fine structure of defects in radial nematic droplets, Phys. Rev. E, 62 (2000), pp. 66946705.

[24] I. Muševič , M. Škarabot , U. Tkalec , M. Ravnik and S. Žumer , Two-dimensional nematic colloidal crystals self-assembled by topological defects, Science, 313 (2006), pp. 954958.

[25] L. Onsager , The effects of shape on the interaction of colloidal particles, Ann. N. Y. Acad. Sci., 51 (1949), pp. 627659.

[26] C. Oseen , The theory of liquid crystals, Trans. Faraday Soc., 29 (1933), pp. 883899.

[27] M. Pandey , P. Ackerman , A. Burkart , T. Porenta , S. Žumer and I. I. Smalyukh , Topology and self-assembly of defect-colloidal superstructure in confined chiral nematic liquid crystals, Phys. Rev. E, 91 (2015), pp. 012501.

[28] P. Poulin , H. Stark , T. Lubensky , and D. Weitz , Novel colloidal interactions in anisotropic fluids, Science, 275 (1997), pp. 17701773.

[29] P. Poulin and D. Weitz , Inverted and multiple nematic emulsions, Phys. Rev. E, 57 (1998), pp. 626.

[30] M. Ravnik and S. Žumer , Landau–de gennes modelling of nematic liquid crystal colloids, Liq. Cryst., 36 (2009), pp. 12011214.

[31] J. Shen , T. Tang , and L.-L. Wang , Spectral Methods: Algorithms, Analysis and Applications, Vol. 41, Springer Science & Business Media, 2011.

[32] M. Tasinkevych , N. Silvestre and M. T. Da Gama , Liquid crystal boojum-colloids, New J. Phys., 14 (2012), pp. 073030.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Numerical Mathematics: Theory, Methods and Applications
  • ISSN: 1004-8979
  • EISSN: 2079-7338
  • URL: /core/journals/numerical-mathematics-theory-methods-and-applications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 57 *
Loading metrics...

Abstract views

Total abstract views: 230 *
Loading metrics...

* Views captured on Cambridge Core between 9th May 2017 - 18th October 2017. This data will be updated every 24 hours.