Skip to main content

Application of the Level-Set Model with Constraints in Image Segmentation

  • Vladimír Klement (a1), Tomáš Oberhuber (a1) and Daniel Ševčovič (a2)

We propose and analyze a constrained level-set method for semi-automatic image segmentation. Our level-set model with constraints on the level-set function enables us to specify which parts of the image lie inside respectively outside the segmented objects. Such a-priori information can be expressed in terms of upper and lower constraints prescribed for the level-set function. Constraints have the same conceptual meaning as initial seeds of the popular graph-cuts based methods for image segmentation. A numerical approximation scheme is based on the complementary-finite volumes method combined with the Projected successive over-relaxation method adopted for solving constrained linear complementarity problems. The advantage of the constrained level-set method is demonstrated on several artificial images as well as on cardiac MRI data.

Corresponding author
*Corresponding author. Email addresses: (T. Oberhuber), (V. Klement), (D. Ševčovič)
Hide All
[1]Beneš M., Kimura M., Pauš P., Ševčovič D., Tsujikawa T., Yazaki S., Application of a curvature adjusted method in image segmentation, Bulletin of Inst. of Mathematics, Academia Sinica, New Series 3 (2008), 509524.
[2]Beneš M., Máca R., Application of a degenerate diffusion method in 3D medical image processing, Proceedings of Agoritmy 2012, Handlovičová A., Minarechová Z. and Ševčovič D. (ed.), (2012), 416426.
[3]Boykov Y., Funka-Lea G., Graph cuts and efficient n-d image segmentation, International Journal of Computer Vision 70 (2006), 109131.
[4]Boykov Y., Jolly M. P., Interactive graph cuts for optimal boundary & region segmentation of objects in n-D images. In: Proceedings of International Conference on Computer Vision, Vancouver, Canada, July 2001, Vol. 1, 105112, 2001.
[5]Boykov Y., Kolmogorov V, An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision, Pattern Analysis and Machine Intelligence 26 (2004), 11241137.
[6]Brézis H., Problèmes unilatéraux, J. Math. Pures Appl. 51 (1972), 1168.
[7]Caselles V., Catté F., Coll T., Dibos F., A geometric model for active contours in image processing, Numerische Mathematik 66 (1993), 131.
[8]Caselles V., R. Kimmel , Sapiro G., Geodesic active contours, in: Proceedings International Conference on Computer Vision' 95, Boston, pp. 694699.
[9]Chan T., Zhu W., Level set based shape prior segmentation, in: Computer Vision and Pattern Recognition, IEEE Computer Society Conference on, 2, (2005), 11641170.
[10]Chung G., Vese L. A., Image segmentation using a multilayer level-set approach, Computing and Visualization in Science, 12(6) (2009), 267285.
[11]Cremers D., Rousson M., Deriche R., A Review of Statistical Approaches to Level Set Segmentation: Integrating Color, Texture, Motion and Shape, Internationa Journal of Computer Vision, 72(2) (2007), 195215.
[12]Droske M., Rumpf M., A level set formulation for Willmore flow, Interfaces Free Boundaries, 6 (3) (2004), 361378.
[13]Elliott C. M., Ockendon J. R., Weak and Variational Methods for Moving Boundary Problems, Vol. 59, Research Notes in Mathematics, Pitman, Boston, Mass., 1982.
[14]Gurholt T. P., Xuecheng Tai, 3D Multiphase Piecewise Constant Level Set Method Based on Graph Cut Minimization, Numer. Math. Theor. Meth. Appl., 2 (2009), 403420.
[15]Handlovičová A., Mikula K., Sgallari F., Semi-implicit complementary volume scheme for solving level set like equations in image processing and curve evolution, Numerische Mathematik 93 (2003), 675695.
[16]He L., Peng Z., Everding B., Wang X., Han Ch. Y., Weiss K. L., Wee W. G., A comparative study of deformable contour methods on medical image segmentation, Image and Vision Computing 26 (2008), 141163.
[17]Jiang Y., Wang M., Xu H., A Survey for Region-based Level Set Image Segmentation, in: IEEE Proceedings of 11th International Symposium on Distributed Computing and Applications to Business, Engineering & Science (DCABES), 19-22 Oct. 2012, 413416.
[18]Kass M., Witkin A., Terzopoulos D., Snakes: Active contour models, International Journal of Computer Vision 1 (1987), 321331.
[19]Kichenassamy S., Kumar A., Olver P., Tannenbaum A., Yezzi A., Jr., Conformal curvature flows: from phase transitions to active vision, Arch. Rational Mech. Anal. 134 (1996), 275301.
[20]Loucký J., Oberhuber T., Graph cuts in segmentation of a left ventricle from MRI data, Proceedings of Czech-Japanese Seminar in Applied Mathematics 2010, ed. Beneš M., Kimura M., Yazaki S., COE Lecture Note, 36 (2012), 4654.
[21]Mangasarian O. L., Solution of symmetric linear complementarity problems by iterative methods, J. Optimization Theory Applicat. 22 (1977), 465485.
[22]Mikula K., Sarti A., Parallel co-volume subjective surface method for 3D medical image segmentation, in: Parametric and Geometric Deformable Models: An application in Bio-materials and Medical Imagery, Volume-II, Springer Publishers, (Eds. Jasjit Suri S. and Farag Aly), 2007, pp. 123160.
[23]Mikula K., Ševčovič D., Computational and qualitative aspects of evolution of curves driven by curvature and external force, Comput. Vis. Sci. 6 (2004), 211225.
[24]Oberhuber T., Complementary finite volume scheme for the anisotropic surface diffusion flow, in: Proceedings of Algoritmy 2009, (2009), 153164.
[25]Geometric Level Set Methods in Imaging, Vision, and Graphics, Osher S., Paragios N. (Eds.), Springer, New-York, 2003.
[26]Paragios N., Deriche R., Geodesic active contours and level sets for the detection and tracking of moving objects, in: Pattern Analysis and Machine Intelligence, IEEE Transactions on 22,(3) (2000), 266280.
[27]Quarteroni A., Sacco R., Saleri F., Numerical Mathematics, Springer, 2000
[28]Sethian J. A., Level Set Methods, Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Cambridge University Press, New York, 1996.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Numerical Mathematics: Theory, Methods and Applications
  • ISSN: 1004-8979
  • EISSN: 2079-7338
  • URL: /core/journals/numerical-mathematics-theory-methods-and-applications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 12 *
Loading metrics...

Abstract views

Total abstract views: 137 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 12th December 2017. This data will be updated every 24 hours.