Skip to main content

Evaluation Algorithm of PHT-Spline Surfaces

  • Zhihua Wang (a1) (a2), Falai Chen (a1) and Jiansong Deng (a1)

PHT-splines are a type of polynomial splines over hierarchical T-meshes which posses perfect local refinement property. This property makes PHT-splines useful in geometric modeling and iso-geometric analysis. Current implementation of PHT-splines stores the basis functions in Bézier forms, which saves some computational costs but consumes a lot of memories. In this paper, we propose a de Boor like algorithm to evaluate PHT-splines provided that only the information about the control coefficients and the hierarchical mesh structure is given. The basic idea is to represent a PHT-spline locally in a tensor product B-spline, and then apply the de-Boor algorithm to evaluate the PHT-spline at a certain parameter pair. We perform analysis about computational complexity and memory costs. The results show that our algorithm takes about the same order of computational costs while requires much less amount of memory compared with the Bézier representations. We give an example to illustrate the effectiveness of our algorithm.

Corresponding author
*Corresponding author. Email address: (F. L. Chen)
Hide All
[1] Forsey, D. R. and Bartels, R. H., Hierarchical B-spline refinement, Comp. Graph., 22(4) (1988), pp. 205212.
[2] Forsey, D. R. and Bartels, R. H., Surface fitting with hierarchical splines, ACM T. Graphic., 14(2) (1995), pp. 134161.
[3] Sederberg, T., Zheng, J., Bakenov, A. and Nasri, A., T-splines and T-NURCCSs, ACM T. Graphic., 22(3) (2003), pp. 477484.
[4] Sederberg, T., Cardon, D., Finnigan, G., North, N., Zheng, J. and Lyche, T., T-spline simplification and local refinement, ACM T. Graphic., 23(3) (2004), pp. 276283.
[5] Deng, J. S., Chen, F. L., Li, X., Hu, C. Q., Tong, W. H., Yang, Z. W. and Feng, Y. Y., Polynomial splines over hierarchical T-meshes, Graph. Models, 70 (2008), pp. 7686.
[6] Li, X., Deng, J. and Chen, F., Surface modeling with polynomial splines over hierarchical T-meshes, Visual Comput., 23(12) (2007), pp. 10271033.
[7] Li, X., Deng, J. S. and Chen, F. L., Polynomial splines over general T-meshes, Visual Comput., 26(4) (2010), pp. 277286.
[8] Li, X. and Scott, M. A., ANALYSIS-SUITABLE T-SPLINES: CHARACTERIZATION, REFINEABILITY, and APPROXIMATION, Math. Mod. Meth. Appl. S., 24(06) (2014), pp. 11411164.
[9] Scott, M. A., Li, X., Sederberg, T. W. and Hughes, T. J. R., Local refinement of analysis-suitable T-splines, Comput. Method. Appl. M., 4 (2012), pp. 206222.
[10] Li, X., Zheng, J. M., Sederberg, T. W., Hughes, T. J. R. and Scott, M. A., On the linear independence of T-spline blending functions, Comput. Aided Geom. D., 29 (1) (2012), pp. 6376.
[11] Giannelli, C., Juttler, B., Speleers, H., THB-splines: the truncated basis for hierarchical splines, Comput. Aided Geom. D., 29 (2012), pp. 485498.
[12] Dokken, T., Lyche, T., Pettersen, K. F., Polynomial splines over locally refined box-partitions, Comput. Aided Geom. D., 30 (2013), pp. 331356.
[13] Pan, M., Tong, W. and Chen, F., Compact implicit surface reconstruction via low-rank tensor approximation, Computer-Aided Design, 78 (2016), pp. 158167.
[14] Tian, L., Chen, F. and Du, Q., Adaptive finite element methods for elliptic equations over hierarchical T-meshes, J. Comput. Appl. Math., 236 (2011), pp. 878891.
[15] Nguyen-Thanh, N., Kiendl, J., Nguyen-Xuan, H., Wuchner, R., Bletzinger, K. U., Bazilevs, Y. and Rabczuk, T., Rotation free isogeometric thin shell analysis using PHT-splines, Comput. Method. Appl. M., 2011, pp. 34103424.
[16] Nguyen-Thanh, N., Nguyen-Xuan, H., Bordas, S. P. A. and Rabczuk, T., Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids, Comput. Method. Appl. M., 200 (2011), pp. 18921908.
[17] Nguyen-Thanh, N., Muthu, J., Zhuang, X. and Rabczuk, T., An adaptive three dimensional RHT-spline formulation in linear elasto-statics and elasto-dynamics, Comput. Mech., 3(2) (2014), pp. 369385.
[18] Nguyen-Thanh, N., Valizadeh, N., Nguyen, M. N., Nguyen-Xuan, H., Zhuang, X., Areias, P., Zi, G., Bazilevs, Y., De Lorenzis, L. and Rabczuk, T., An extended isogeometric thin shell analysis based on Kirchhoff-Love theory, Comput. Method. Appl. M., 284 2015, pp. 265291.
[19] Wang, P., Xu, J. L., Deng, J. S. and Chen, F. L., Adaptive isogeometric analysis using rational PHT-splines, Computer-Aided Design, 43 (2011), pp. 14381448.
[20] Wang, J., Yang, Z., Jin, L., Deng, J. and Chen, F., Parallel and adaptive surface reconstruction based on implicit PHT-splines, Comput. Aided Geom. D., 28(8) (2011), pp. 463474.
[21] Deng, J., Chen, F. and Feng, Y., Dimensions of spline spaces over T-meshes, J. Comput. Appl. Math., 194 (2006), pp. 267283.
[22] Mourrain, B., On the dimension of spline spaces on planar T-meshes, Math. Comput., 83 (2014), pp. 847871.
[23] Li, X. and Chen, F., On the instability in the dimension of splines spaces over T-meshes, Comput. Aided Geom. D., 28 (2011), pp. 420426.
[24] Deng, J., Chen, F. and Jin, L., Dimensions of biquadratic spline spaces over T-meshes, J. Comput. Appl. Math., 238 (2013), pp. 6894.
[25] Wu, M., Deng, J. and Chen, F., Dimension of spline spaces with highest order smoothness over hierarchical T-meshes, Comput. Aided Geom. D., 30 (2013), pp. 2034.
[26] Berdinsky, D., Oh, M., Kim, T. and Mourrain, B., On the problem of instability in the dimension of a spline space over a T-mesh, Comput. Graph., 36 (2012), pp. 507513.
[27] Zeng, C., Deng, F., Li, X. and Deng, J., Dimensions of biquadratic and bicubic spline spaces over hierarchical T-meshes, J. Comput. Appl. Math., 287 (2015), pp. 162178.
[28] Zeng, C., Deng, F. and Deng, J., Bicubic hierarchical B-splines: Dimensions, completeness, and bases, Comput. Aided Geom. D., 38 (2015), pp. 123.
[29] Farin, G., Curves and Surfaces for CAGD–A Practical Guide, 5th ed., Morgan Kaufmann Publishers, 2002.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Numerical Mathematics: Theory, Methods and Applications
  • ISSN: 1004-8979
  • EISSN: 2079-7338
  • URL: /core/journals/numerical-mathematics-theory-methods-and-applications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 1
Total number of PDF views: 35 *
Loading metrics...

Abstract views

Total abstract views: 163 *
Loading metrics...

* Views captured on Cambridge Core between 12th September 2017 - 20th March 2018. This data will be updated every 24 hours.