[1]
Forsey, D. R. and Bartels, R. H., Hierarchical B-spline refinement, Comp. Graph., 22(4) (1988), pp. 205–212.

[2]
Forsey, D. R. and Bartels, R. H., Surface fitting with hierarchical splines, ACM T. Graphic., 14(2) (1995), pp. 134–161.

[3]
Sederberg, T., Zheng, J., Bakenov, A. and Nasri, A., T-splines and T-NURCCSs, ACM T. Graphic., 22(3) (2003), pp. 477–484.

[4]
Sederberg, T., Cardon, D., Finnigan, G., North, N., Zheng, J. and Lyche, T., T-spline simplification and local refinement, ACM T. Graphic., 23(3) (2004), pp. 276–283.

[5]
Deng, J. S., Chen, F. L., Li, X., Hu, C. Q., Tong, W. H., Yang, Z. W. and Feng, Y. Y., Polynomial splines over hierarchical T-meshes, Graph. Models, 70 (2008), pp. 76–86.

[6]
Li, X., Deng, J. and Chen, F., Surface modeling with polynomial splines over hierarchical T-meshes, Visual Comput., 23(12) (2007), pp. 1027–1033.

[7]
Li, X., Deng, J. S. and Chen, F. L., Polynomial splines over general T-meshes, Visual Comput., 26(4) (2010), pp. 277–286.

[8]
Li, X. and Scott, M. A., ANALYSIS-SUITABLE T-SPLINES: CHARACTERIZATION, REFINEABILITY, and APPROXIMATION, Math. Mod. Meth. Appl. S., 24(06) (2014), pp. 1141–1164.

[9]
Scott, M. A., Li, X., Sederberg, T. W. and Hughes, T. J. R., Local refinement of analysis-suitable T-splines, Comput. Method. Appl. M., 4 (2012), pp. 206–222.

[10]
Li, X., Zheng, J. M., Sederberg, T. W., Hughes, T. J. R. and Scott, M. A., On the linear independence of T-spline blending functions, Comput. Aided Geom. D., 29 (1) (2012), pp. 63–76.

[11]
Giannelli, C., Juttler, B., Speleers, H., THB-splines: the truncated basis for hierarchical splines, Comput. Aided Geom. D., 29 (2012), pp. 485–498.

[12]
Dokken, T., Lyche, T., Pettersen, K. F., Polynomial splines over locally refined box-partitions, Comput. Aided Geom. D., 30 (2013), pp. 331–356.

[13]
Pan, M., Tong, W. and Chen, F., Compact implicit surface reconstruction via low-rank tensor approximation, Computer-Aided Design, 78 (2016), pp. 158–167.

[14]
Tian, L., Chen, F. and Du, Q., Adaptive finite element methods for elliptic equations over hierarchical T-meshes, J. Comput. Appl. Math., 236 (2011), pp. 878–891.

[15]
Nguyen-Thanh, N., Kiendl, J., Nguyen-Xuan, H., Wuchner, R., Bletzinger, K. U., Bazilevs, Y. and Rabczuk, T., Rotation free isogeometric thin shell analysis using PHT-splines, Comput. Method. Appl. M., 2011, pp. 3410–3424.

[16]
Nguyen-Thanh, N., Nguyen-Xuan, H., Bordas, S. P. A. and Rabczuk, T., Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids, Comput. Method. Appl. M., 200 (2011), pp. 1892–1908.

[17]
Nguyen-Thanh, N., Muthu, J., Zhuang, X. and Rabczuk, T., An adaptive three dimensional RHT-spline formulation in linear elasto-statics and elasto-dynamics, Comput. Mech., 3(2) (2014), pp. 369–385.

[18]
Nguyen-Thanh, N., Valizadeh, N., Nguyen, M. N., Nguyen-Xuan, H., Zhuang, X., Areias, P., Zi, G., Bazilevs, Y., De Lorenzis, L. and Rabczuk, T., An extended isogeometric thin shell analysis based on Kirchhoff-Love theory, Comput. Method. Appl. M., 284
2015, pp. 265–291.

[19]
Wang, P., Xu, J. L., Deng, J. S. and Chen, F. L., Adaptive isogeometric analysis using rational PHT-splines, Computer-Aided Design, 43 (2011), pp. 1438–1448.

[20]
Wang, J., Yang, Z., Jin, L., Deng, J. and Chen, F., Parallel and adaptive surface reconstruction based on implicit PHT-splines, Comput. Aided Geom. D., 28(8) (2011), pp. 463–474.

[21]
Deng, J., Chen, F. and Feng, Y., Dimensions of spline spaces over T-meshes, J. Comput. Appl. Math., 194 (2006), pp. 267–283.

[22]
Mourrain, B., On the dimension of spline spaces on planar T-meshes, Math. Comput., 83 (2014), pp. 847–871.

[23]
Li, X. and Chen, F., On the instability in the dimension of splines spaces over T-meshes, Comput. Aided Geom. D., 28 (2011), pp. 420–426.

[24]
Deng, J., Chen, F. and Jin, L., Dimensions of biquadratic spline spaces over T-meshes, J. Comput. Appl. Math., 238 (2013), pp. 68–94.

[25]
Wu, M., Deng, J. and Chen, F., Dimension of spline spaces with highest order smoothness over hierarchical T-meshes, Comput. Aided Geom. D., 30 (2013), pp. 20–34.

[26]
Berdinsky, D., Oh, M., Kim, T. and Mourrain, B., On the problem of instability in the dimension of a spline space over a T-mesh, Comput. Graph., 36 (2012), pp. 507–513.

[27]
Zeng, C., Deng, F., Li, X. and Deng, J., Dimensions of biquadratic and bicubic spline spaces over hierarchical T-meshes, J. Comput. Appl. Math., 287 (2015), pp. 162–178.

[28]
Zeng, C., Deng, F. and Deng, J., Bicubic hierarchical B-splines: Dimensions, completeness, and bases, Comput. Aided Geom. D., 38 (2015), pp. 1–23.

[29]
Farin, G., Curves and Surfaces for CAGD–A Practical Guide, 5th ed., Morgan Kaufmann Publishers, 2002.