Skip to main content
×
Home

A FEM-Multigrid Scheme for Elliptic Nash-Equilibrium Multiobjective Optimal Control Problems

  • Mohammad Tanvir Rahman (a1) and Alfio Borzì (a1)
Abstract
Abstract

A finite-element multigrid scheme for elliptic Nash-equilibrium multiobjective optimal control problems with control constraints is investigated. The multigrid computational framework implements a nonlinear multigrid strategy with collective smoothing for solving the multiobjective optimality system discretized with finite elements. Error estimates for the optimal solution and two-grid local Fourier analysis of the multigrid scheme are presented. Results of numerical experiments are presented to demonstrate the effectiveness of the proposed framework.

Copyright
Corresponding author
*Email addresses: tanvir.rahman@mathematik.uni-wuerzburg.de (Mohammad Tanvir Rahman), alfio.borzi@mathematik.uni-wuerzburg.de, (Alfio Borzí)
References
Hide All
[1]Borzì A. and Kanzow C., Formulation and numerical solution of nash equilibrium multiobjective elliptic control problems, SIAM J. Control Optim., 51(2013), 718744.
[2]Borzì A. and Schulz V., Computational optimization of systems governed by partial differential equations, SIAM book series on Computational Science and Engineering 08, SIAM, Philadelphia, PA, 2012.
[3]Borzì A. and Kunisch K., A multigrid scheme for elliptic constrained optimal control problems, Comput. Optim. Appl., 31 (2005), pp. 309333.
[4]Brandt A., Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, GMD Studies 85, GMD-FTT, 1985.
[5]Trottenberg U. and Schuller A., Multigrid, Academic Press, Inc., Orlando, FL, 2001.
[6]Gockenbach M.S., Understanding and implementing the finite element method, SIAM 2006.
[7]Chinchuluun A., Pardalos P.M., Migdalas A., and Pitsoulis L. (Eds.), Pareto Optimality, Game Theory and Equilibria, Springer, 2008.
[8]Dempe S., Foundations ofBilevel Programming, Kluwer Academic Press, Dordrecht, 2002.
[9]Désidéri J.-A., Cooperation and competition in multidisciplinary optimization. Application to the aero-structural aircraft wing shape optimization. Comput. Optim. Appl., 52 (2012), pp. 2968.
[10]Ehrgott M., Multicriteria Optimization, Springer, 2nd edition 2005.
[11]Gauger N., Ilic C., Schmidt S. and Schulz V., Non-parametric aerodynamic shape optimization, in Leugering G., Engell S., Griewank A., Hinze M., Rannacher R., Schulz V., Ulbrich M., and Ulbrich S. (eds.), Constrained Optimization and Optimal Control for Partial Differential Equations, International Series of Numerical Mathematics, vol, 160, pp. 289300, Birkhäuser 2012.
[12]Lions J.L., Controle de Pareto de systemes distribues: Le cas devolution. Comptes Rendus de l’Academie des Sciences, Serie I, 302 (1986), pp. 413417.
[13]Liu G.P., Yang J.B., and Whidborne J.F., Multiobjective Optimisation and Control, Research Studies Press LTD, 2001.
[14]Ramos A.M., Glowinski R., and Periaux J., Nash equilibria for the multiobjective control of linear partial differential equations, J. Optim. Theory Appl., 112 (2002), pp. 457498.
[15]Ramos A.M., Glowinski R., and Periaux J., Pointwise control of the Burgers equation and related Nash equilibrium problems: Computational approach., J. Optim. Theory Appl., 112 (2002), pp. 499516.
[16]Rösch A., Error estimates for linear-quadratic control problems with control constraints, Optimization Methods and Software 21 (2006), 121134.
[17]Stadler W., Fundamentals of multicriteria optimization, In Multicriteria optimization in engineering and in the sciences, volume 37 of Math. Concepts Methods Sci. Engrg., pages 125. Plenum, New York, 1988.
[18]Hintermüller M. and Surowiec T., APDE-constrained generalized Nash equilibrium problem with pointwise control and state constraints., Pacific J. on Optimization 9(2), 251273, 2013
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Numerical Mathematics: Theory, Methods and Applications
  • ISSN: 1004-8979
  • EISSN: 2079-7338
  • URL: /core/journals/numerical-mathematics-theory-methods-and-applications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 6 *
Loading metrics...

Abstract views

Total abstract views: 165 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th November 2017. This data will be updated every 24 hours.