Skip to main content
×
Home
    • Aa
    • Aa

Finite Element and Discontinuous Galerkin Methods with Perfect Matched Layers for American Options

  • Haiming Song (a1), Kai Zhang (a1) and Yutian Li (a2)
Abstract
Abstract

This paper is devoted to the American option pricing problem governed by the Black-Scholes equation. The existence of an optimal exercise policy makes the problem a free boundary value problem of a parabolic equation on an unbounded domain. The optimal exercise boundary satisfies a nonlinear Volterra integral equation and is solved by a high-order collocation method based on graded meshes. This free boundary is then deformed to a fixed boundary by the front-fixing transformation. The boundary condition at infinity (due to the fact that the underlying asset's price could be arbitrarily large in theory), is treated by the perfectly matched layer technique. Finally, the resulting initial-boundary value problems for the option price and some of the Greeks on a bounded rectangular space-time domain are solved by a finite element method. In particular, for Delta, one of the Greeks, we propose a discontinuous Galerkin method to treat the discontinuity in its initial condition. Convergence results for these two methods are analyzed and several numerical simulations are provided to verify these theoretical results.

Copyright
Corresponding author
*Corresponding author. Email addresses: kzhang@jlu.edu.cn (K. Zhang), yutianli@hkbu.edu.hk (Y. T. Li)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Numerical Mathematics: Theory, Methods and Applications
  • ISSN: 1004-8979
  • EISSN: 2079-7338
  • URL: /core/journals/numerical-mathematics-theory-methods-and-applications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 2
Total number of PDF views: 13 *
Loading metrics...

Abstract views

Total abstract views: 56 *
Loading metrics...

* Views captured on Cambridge Core between 12th September 2017 - 19th October 2017. This data will be updated every 24 hours.