[1]
Adams, R. A., Sobolev Spaces, Academic Press, New York, 1975.

[2]
Allegretto, W., Lin, Y. and Yang, H., Finite element error estimates for a nonlocal problem in American option valuation, SIAM J. Numer. Anal., 39 (2001), pp. 834–857.

[3]
Amin, K. and Khanna, A., Convergence of American option values from discrete-to continuous-time financial models, Math. Finance, 4 (1994), pp. 289–304.

[4]
Barone-Adesi, G. and Whaley, R., Efficient Analytical Approximation of American Option Values, J. Fin., 42 (1987), pp. 301–320.

[5]
Badea, L. and Wang, J., A new formulation for the valuation of American options, I: Solution uniqueness, in Proceedings of the 19th Daewoo Workshop in Analysis and Scientific Computing, Park, Eun-Jae and Lee, Jongwoo, eds., 2000, pp. 3–16.

[6]
Badea, L. and Wang, J., A new formulation for the valuation of American options, II: Solution existence, in Proceedings of the 19th Daewoo Workshop in Analysis and Scientific Computing, Park, Eun-Jae and Lee, Jongwoo, eds., 2000, pp. 17–33.

[7]
Berenger, J. P., A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114 (1994), pp. 185–200.

[8]
Berenger, J. P., Three-dimensional perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 127 (1996), pp. 363–379.

[9]
Black, F. and Scholes, M., The pricing of options and corporate liabilities, J. Pol. Econ., 81 (1973), pp. 637–659.

[10]
Brennan, M. and Schwartz, E., The valuation of American put options, J. Fin., 32 (1977), pp. 449–462.

[11]
Brunner, H., Collocation Methods for Volterra Integral and Related Functional Equations, Cambridge University Press, Cambridge, 2004.

[12]
Carr, P., Jarrow, R. and Myneni, R., Alternative characterizations of American put options, Math. Finance, 2 (1992), pp. 87–106.

[13]
Chen, J., Wang, D. S. and Wu, H. J., An adaptive finite element method with a modified perfectly matched layer formulation for diffraction gratings, Commun. Comput. Phys., 6 (2009), pp. 290–318.

[14]
Chen, Z. M. and Wu, H. J., An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures, SIAM. J. Numer. Anal., 41 (2003), pp. 799–826.

[15]
Chen, Z. M., Guo, B. Q. and Xiao, Y. M., An hp adaptive uniaxial perfectly matched layer method for Helmholtz scattering problems, Commun. Comput. Phys., 5 (2009), pp. 546–564.

[16]
Ciarlet, P. G., The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.

[17]
Cox, J. C., Ross, S. A. and Rubinstein, M., Option pricing: A simplified approach, J. Fin. Econ., 7 (1979), pp. 229–263.

[18]
Evans, J. D., Kuske, R. and Keller, J. B., American options on assets with dividends near expiry, Math. Finance, 12 (2002), pp. 219–237.

[19]
Han, H. and Wu, X., A fast numerical method for the Black-Scholes equation of American options, SIAM J. Numer. Anal., 41 (2003), pp. 2081–2095.

[20]
Holmes, A. D. and Yang, H., A front-fixing finite element method for the valuation of American options, SIAM J. Sci. Comput., 30 (2008), pp. 2158–2180.

[21]
Hull, J., Fundamentals of Futures and Options Markets, 6th Revised ed, Prentice Hall, Upper Saddle River, 2007.

[22]
Jaillet, P., Lamberton, D. and Lapeyre, B., Variational inequalities and the pricing of American options, Acta Appl. Math., 21 (1990), pp. 263–289.

[23]
Ju, N. and Zhong, R., An Approximate Formula for Pricing American Options, The Journal of Derivatives, 7 (1999), pp. 31–40.

[24]
Jiang, L., Mathematical Modeling and Methods of Option Pricing, World Scientific Press, Singapore, 2005.

[25]
Kim, I. J., The analytic valuation of American puts, Rev. Fin. Stud., 3 (1990), pp. 547–572.

[26]
Kwok, Y. K., Mathematical Models of Financial Derivatives, 2nd ed, Springer Finance, Berlin Heidelberg, 2008.

[27]
Lantos, N. and Nataf, F., Perfectly matched layers for the heat and advection-diffusion equations, J. Comput. Phys., 229 (2010), pp. 9042–9052

[28]
Lin, Y. P., Zhang, K. and Zou, J., Studies on some perfectly matched layers for one-dimensional time-dependent systems, Adv. Comput. Math., 30 (2009), pp. 1–35.

[29]
Larsson, S. and Thomee, V., Partial Differential Equations with Numerical Methods, Springer-Verlag Press, Berlin Heidelberg, 2003.

[30]
Liang, C. and Xiang, X., Convergence of an anisotropic perfectly matched layer method for Helmholtz scattering problems, Numer. Math. Theory Methods Appl., 9 (2016), pp. 358–382.

[31]
Ma, J., Xiang, K. and Jiang, Y., An integral equation method with high-order collocation implementations for pricing American put options, Int. J. Econ. Finance, 2 (2010), pp. 102–112.

[32]
Nicholls, D. P. and Sward, A., A discontinuous Galerkin method for pricing American options under the constant elasticity of variance model, Commun. Comput. Phys., 17 (2015), pp. 761–778.

[33]
Riviere, B., Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation, SIAM. Frontiers in Applied Mathematics, 2008.

[34]
Schwartz, E. S., The valuation of warrants: Implementing a new approach, J. Fin. Econ., 4 (1977), pp. 79–93.

[35]
Wu, X. and Zheng, W., An adaptive perfectly matched layer method for multiple cavity scattering problems, Commun. Comput. Phys., 19 (2016), pp. 534–558.

[36]
Zhang, R., Song, H. and Luan, N., A weak Galerkin finite element method for the valuation of American options, Front. Math. China, 9 (2014), pp. 455–476.

[37]
Zhang, K., Song, H. and Li, J., Front-fixing FEMs for the pricing of American options based on a PML technique, Appl. Anal., 94 (2015), pp. 903–931.