Skip to main content
×
×
Home

Finite Element Simulations with Adaptively Moving Mesh for the Reaction Diffusion System

  • Congcong Xie (a1) and Xianliang Hu (a2)
Abstract
Abstract

A moving mesh method is proposed for solving reaction-diffusion equations. The finite element method is used to solving the partial different equation system, and an efficient numerical scheme is applied to implement mesh moving. In the practical calculations, the moving mesh step and the problem equation solver are performed alternatively. Several numerical examples are presented, including the Gray-Scott, the Activator-Inhibitor and a case with a growing domain. It is illustrated numerically that the moving mesh methods costs much lower, compared with the numerical schemes on a fixed mesh. Even in the case of complex pattern dynamics described by the reaction-diffusion systems, the adapted meshes can capture the details successfully.

Copyright
Corresponding author
*Corresponding author. Email addresses: xlhu@zju.edu.cn (X. Hu), ccxie@zjut.edu.cn (C. Xie)
References
Hide All
[1] Adams R.A. and Fournier J.J.F., Sobolev Spaces, Number 140 in Pure and Applied Mathematics, Elsevier Science, 2003.
[2] Ascher U. M., Ruuth S. J., and Wetton B. T. R., Implicit-explicit methods for time-dependent pdes, SIAM J. Numer. Anal., 32 (1997), pp.797823.
[3] Brenner S. C. and Scott L. R., The Mathematical Theory of Finite Element Methods, Springer, 2nd edition, April 2002.
[4] Ceniceros H. D. and Hou T. Y., An efficient dynamically adaptive mesh for potentially singular solutions, J. Comput. Phys., 172 (2001), pp. 609639.
[5] Ciarlet P. G., The finite element method for elliptic problems, SIAM: Society for Industrial and Applied Mathematics, 2nd edition, 2002.
[6] Garvie M. R., Finite-difference schemes for reaction-diffusion equations modeling predatorprey interactions in matlab, Bulletin of Mathematical Biology, 69 (2007), pp. 931956.
[7] Hu G. and Zegeling P. A., Simulating finger phenomena in porous media with a moving finite element method, J. Comput. Phys., 230 (2011), pp. 32493263.
[8] Huang W., Moving mesh strategy based on a gradient flow equation for two-dimensional problems, SIAM J. Sci. Comp., 3 (1999), pp. 9981015.
[9] Kassam A. and Trefethen L. N., Solving reaction-diffusion equations 10 times faster, Oxford University, Numerical Analysis Group Research Report No.16, 2003.
[10] Kimura M., Komura H., Mimura M., Miroshi H., Takaishi T., and Ueyama D., Adaptive mesh finite element method for pattern dynamics in reaction-diffusion systems, Proceedings of the Czech-Japanese Seminar in Applied Mathematics, 1 (2005), pp. 5668.
[11] Lee S. S. and Gaffney E. A., Aberrant behaviors of reaction diffusion self-organisation models on growing domains in the presence of gene expression time delays, Bulletin of Mathematical Biology, 72 (2010), pp. 21612179.
[12] Li R., Tang T., and Zhang P., Moving mesh methods in multiple dimensions based on harmonic maps, J. Comput. Phys., 170 (2001), pp. 562588.
[13] Liang K., Lin P., Ong M. T., and Tan R. C. E., A splitting moving mesh method for reaction-diffusion equations of quenching type, J. Comput. Phys., 215 (2006), pp. 757777.
[14] Mackenzie J. A., The efficient generation of simple two-dimensional adaptive grids, SIAM J. Sci. Comput., 19 (1998), pp. 13401365.
[15] Madzvamuse A., Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains, J. Comput. Phys., 214 (2006), pp. 239263.
[16] Mimura M., Pattern formation in consumer-finite resource reaction-diffusion systems, Publ. RIMS, Kyoto Univ., 40 (2004), pp. 14131431.
[17] Murray J. D., Mathematical Biology 2nd. ed., Springer-Verlag, 1993.
[18] Page K. M., Maini P. K., and Monk N. A. M., Complex pattern formation in reaction-diffusion systems with spatially varying parameters, Physica D, 202 (2005), pp. 95115.
[19] Pearson J. A., Complex patterns in a simple system, Science, 261 (1993), pp. 189192.
[20] Tan Z., Adaptive moving mesh methods for two-dimensional resistive magnetohydrodynamic PDE models, Comput. & Fluids, 36 (2006), pp. 758771.
[21] Thomée V., Galerkin Finite Element Methods for Parabolic Problems (Springer Series in Computational Mathematics), Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.
[22] Wang H.-Y., Li R., and Tang T., Efficient computation of dendritic growth with r-adaptive finite element methods, J. Comput. Phys., 227 (2008), pp. 59846000.
[23] De Zeeuw P.M., Matrix-dependent prolongations and restrictions in a blackbox multi-grid solver, J. Comput. Appl. Math., 33 (1990), pp. 127.
[24] Zegeling P. A. and Kok H. P., Adaptive moving mesh computations for reaction-diffusion systems, J. Comput. Appl. Math., 168 (2004), pp. 519528.
[25] Zhang Z. and Tang T., An adaptive mesh redistribution algorithm for convection-dominated problems, Comm. Pure Appl. Anal., 1 (2002), pp. 341357.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Numerical Mathematics: Theory, Methods and Applications
  • ISSN: 1004-8979
  • EISSN: 2079-7338
  • URL: /core/journals/numerical-mathematics-theory-methods-and-applications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 61 *
Loading metrics...

Abstract views

Total abstract views: 236 *
Loading metrics...

* Views captured on Cambridge Core between 17th November 2016 - 19th January 2018. This data will be updated every 24 hours.