This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[2]
G. D. Akrivis , V. A. Dougalis and O. A. Karakashian , On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation, Numer. Math., 59 (1991), pp. 31–53.

[3]
X. Antoine , C. Besse and S. Descombes , Artificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations, SIAM J. Numer. Anal., 43 (2006), pp. 2272–2293.

[5]
D. C. Antonopoulou , G. D. Karali , M. Plexousakis and G. E. Zouraris , Crank-Nicolson finite element discretizations for a two-dimensional linear Schrödinger-type equation posed in a noncylindrical domain, Math. Comp., 84 (2015), pp. 1571–1598.

[6]
W. Z. Bao , S. Jin and P. A. Markowich , Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regimes, SIAM J. Sci. Comput., 25 (2003), pp. 27–64.

[7]
Q. S. Chang , E. Jia and W. Sun , Difference schemes for solving the generalized nonlinear Schrödinger equation, J. Comput. Phys., 148 (1999), pp. 397–415.

[10]
X. L. Hu and L. M. Zhang , Conservative compact difference schemes for the coupled nonlinear Schrödinger system, Numer. Methods Partial Differential Equations, 30 (2014), pp. 749–772.

[11]
M. S. Ismail , Numerical solution of coupled nonlinear Schrödinger equation by Galerkin method, Math. Comput. Simul., 78 (2008), pp. 532–547.

[12]
J. C. Jin , N. Wei and H. M. Zhang , A two-grid finite-element method for the nonlinear Schrödinger equation, J. Comput. Math., 33 (2015), pp. 146–157.

[14]
O. A. Karakashian , G. D. Akrivis and V. A. Dougalis , On Optimal Order Error Estimates for the Nonlinear Schrödinger Equation, SIAM J. Numer. Anal., 30 (1993), pp. 377–400.

[15]
O. A. Karakashian and C. Makridakis , A space-time finite element method for the nonlinear Schrödinger equation: the continuous Galerkin method, SIAM J. Numer. Anal., 36 (1999), pp. 1779–1807.

[17]
H. Y. Lee , Fully discrete methods for the nonlinear Schrödinger equation, Comput. Math. Appl., 28 (1994), pp. 9–24.

[20]
W. Y. LU , Y. Q. Huang and H. L. Liu , Mass preserving discontinuous Galerkin methods for Schrödinger equations, J. Comput. Phys., 282 (2015), pp. 210–226.

[22]
D. Y. Shi , P. L. Wang and Y. M. Zhao , Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation, Appl. Math. Lett., 38 (2014), pp. 129–134.

[23]
T. R. Taha , A numerical scheme for the nonlinear Schrödinger equation, Comput. Math. Appl., 22 (1991), pp. 77–84.

[25]
Y. Tourigny and J. L. Morris , An investigation into the effect of product approximation in the numerical solution of the cubic nonlinear Schrödinger equation, J. Comput. Phys., 76 (1988), pp. 103–130.

[26]
J. L. Wang , A new error analysis of Crank-Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation, J. Sci. Comput., 60 (2014), pp. 390–407.

[27]
J. Y. Wang , Y. Q. Huang , Z. K. Tian and J. Zhou , Superconvergence analysis of finite element method for the time-dependent Schrödinger equation, Comput. Math. Appl., 71 (2016), pp. 1960–1972.

[28]
Y. Xu and C.W. Shu , Local discontinuous Galerkin methods for nonlinear Schrödinger equations, J. Comput. Phys., 205 (2005), pp. 72–97.