Skip to main content
    • Aa
    • Aa

Fully Discrete Galerkin Finite Element Method for the Cubic Nonlinear Schrödinger Equation

  • Jianyun Wang (a1) and Yunqing Huang (a2)

This paper is concerned with numerical method for a two-dimensional time-dependent cubic nonlinear Schrödinger equation. The approximations are obtained by the Galerkin finite element method in space in conjunction with the backward Euler method and the Crank-Nicolson method in time, respectively. We prove optimal L 2 error estimates for two fully discrete schemes by using elliptic projection operator. Finally, a numerical example is provided to verify our theoretical results.

Corresponding author
*Corresponding author. Email addresses: (J. Y. Wang), (Y. Q. Huang)
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[2] G. D. Akrivis , V. A. Dougalis and O. A. Karakashian , On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation, Numer. Math., 59 (1991), pp. 3153.

[3] X. Antoine , C. Besse and S. Descombes , Artificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations, SIAM J. Numer. Anal., 43 (2006), pp. 22722293.

[5] D. C. Antonopoulou , G. D. Karali , M. Plexousakis and G. E. Zouraris , Crank-Nicolson finite element discretizations for a two-dimensional linear Schrödinger-type equation posed in a noncylindrical domain, Math. Comp., 84 (2015), pp. 15711598.

[6] W. Z. Bao , S. Jin and P. A. Markowich , Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regimes, SIAM J. Sci. Comput., 25 (2003), pp. 2764.

[7] Q. S. Chang , E. Jia and W. Sun , Difference schemes for solving the generalized nonlinear Schrödinger equation, J. Comput. Phys., 148 (1999), pp. 397415.

[10] X. L. Hu and L. M. Zhang , Conservative compact difference schemes for the coupled nonlinear Schrödinger system, Numer. Methods Partial Differential Equations, 30 (2014), pp. 749772.

[11] M. S. Ismail , Numerical solution of coupled nonlinear Schrödinger equation by Galerkin method, Math. Comput. Simul., 78 (2008), pp. 532547.

[12] J. C. Jin , N. Wei and H. M. Zhang , A two-grid finite-element method for the nonlinear Schrödinger equation, J. Comput. Math., 33 (2015), pp. 146157.

[14] O. A. Karakashian , G. D. Akrivis and V. A. Dougalis , On Optimal Order Error Estimates for the Nonlinear Schrödinger Equation, SIAM J. Numer. Anal., 30 (1993), pp. 377400.

[15] O. A. Karakashian and C. Makridakis , A space-time finite element method for the nonlinear Schrödinger equation: the continuous Galerkin method, SIAM J. Numer. Anal., 36 (1999), pp. 17791807.

[17] H. Y. Lee , Fully discrete methods for the nonlinear Schrödinger equation, Comput. Math. Appl., 28 (1994), pp. 924.

[20] W. Y. LU , Y. Q. Huang and H. L. Liu , Mass preserving discontinuous Galerkin methods for Schrödinger equations, J. Comput. Phys., 282 (2015), pp. 210226.

[22] D. Y. Shi , P. L. Wang and Y. M. Zhao , Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation, Appl. Math. Lett., 38 (2014), pp. 129134.

[23] T. R. Taha , A numerical scheme for the nonlinear Schrödinger equation, Comput. Math. Appl., 22 (1991), pp. 7784.

[25] Y. Tourigny and J. L. Morris , An investigation into the effect of product approximation in the numerical solution of the cubic nonlinear Schrödinger equation, J. Comput. Phys., 76 (1988), pp. 103130.

[26] J. L. Wang , A new error analysis of Crank-Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation, J. Sci. Comput., 60 (2014), pp. 390407.

[27] J. Y. Wang , Y. Q. Huang , Z. K. Tian and J. Zhou , Superconvergence analysis of finite element method for the time-dependent Schrödinger equation, Comput. Math. Appl., 71 (2016), pp. 19601972.

[28] Y. Xu and C.W. Shu , Local discontinuous Galerkin methods for nonlinear Schrödinger equations, J. Comput. Phys., 205 (2005), pp. 7297.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Numerical Mathematics: Theory, Methods and Applications
  • ISSN: 1004-8979
  • EISSN: 2079-7338
  • URL: /core/journals/numerical-mathematics-theory-methods-and-applications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 23 *
Loading metrics...

Abstract views

Total abstract views: 61 *
Loading metrics...

* Views captured on Cambridge Core between 20th June 2017 - 26th July 2017. This data will be updated every 24 hours.