[1]
AkrivisG. D., Finite difference discretization of the cubic Schrödinger equation, IMA J. Numer. Anal., 13 (1993), pp. 115–124.

[2]
AkrivisG. D., DougalisV. A. and KarakashianO. A., On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation, Numer. Math., 59 (1991), pp. 31–53.

[3]
AntoineX., BesseC. and DescombesS., Artificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations, SIAM J. Numer. Anal., 43 (2006), pp. 2272–2293.

[4]
AntoineX., BaoW. Z. and BesseC., Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations, Comput. Phys. Comm., 184 (2013), pp. 2621–2633.

[5]
AntonopoulouD. C., KaraliG. D., PlexousakisM. and ZourarisG. E., Crank-Nicolson finite element discretizations for a two-dimensional linear Schrödinger-type equation posed in a noncylindrical domain, Math. Comp., 84 (2015), pp. 1571–1598.

[6]
BaoW. Z., JinS. and MarkowichP. A., Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regimes, SIAM J. Sci. Comput., 25 (2003), pp. 27–64.

[7]
ChangQ. S., JiaE. and SunW., Difference schemes for solving the generalized nonlinear Schrödinger equation, J. Comput. Phys., 148 (1999), pp. 397–415.

[8]
DehghanM. and TaleeiA., Numerical solution of nonlinear Schrödinger equation by using time-space pseudo-spectral method, Numer. Methods Partial Differential Equations, 26 (2010), pp. 979–992.

[9]
GongX. G., ShenL. H., ZhangD. E. and ZhouA. H., Finite element approximations for Schrödinger equations with applications to electronic structure computations, J. Comput. Math., 26 (2008), pp. 310–323.

[10]
HuX. L. and ZhangL. M., Conservative compact difference schemes for the coupled nonlinear Schrödinger system, Numer. Methods Partial Differential Equations, 30 (2014), pp. 749–772.

[11]
IsmailM. S., Numerical solution of coupled nonlinear Schrödinger equation by Galerkin method, Math. Comput. Simul., 78 (2008), pp. 532–547.

[12]
JinJ. C., WeiN. and ZhangH. M., A two-grid finite-element method for the nonlinear Schrödinger equation, J. Comput. Math., 33 (2015), pp. 146–157.

[13]
JinJ. C. and WuX. N., Convergence of a finite element scheme for the two-dimensional time-dependent Schrödinger equation in a long strip, J. Comput. Appl. Math., 234 (2010), pp. 777–793.

[14]
KarakashianO. A., AkrivisG. D. and DougalisV. A., On Optimal Order Error Estimates for the Nonlinear Schrödinger Equation, SIAM J. Numer. Anal., 30 (1993), pp. 377–400.

[15]
KarakashianO. A. and MakridakisC., A space-time finite element method for the nonlinear Schrödinger equation: the continuous Galerkin method, SIAM J. Numer. Anal., 36 (1999), pp. 1779–1807.

[16]
KarakashianO. A. and MakridakisC., A space-time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method, Math. Comp., 67 (1998), pp. 479–499.

[17]
LeeH. Y., Fully discrete methods for the nonlinear Schrödinger equation, Comput. Math. Appl., 28 (1994), pp. 9–24.

[18]
LinQ. and LiuX. Q., Global superconvergence estimates of finite element method for Schrödinger equation, J. Comput. Math., 6 (1998), pp. 521–526.

[19]
LiuY. and LiH., H^{1}-Galerkin mixed finite element method for the linear schrödinger equation, Adv. Math., 39 (2010), pp. 429–442.

[20]
LUW. Y., HuangY. Q. and LiuH. L., Mass preserving discontinuous Galerkin methods for Schrödinger equations, J. Comput. Phys., 282 (2015), pp. 210–226.

[21]
SANZ-SernaJ. M., Methods for the numerical solution of the nonlinear Schrödinger equation, Math. Comp., 43 (1984), pp. 21–27.

[22]
ShiD. Y., WangP. L. and ZhaoY. M., Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation, Appl. Math. Lett., 38 (2014), pp. 129–134.

[23]
TahaT. R., A numerical scheme for the nonlinear Schrödinger equation, Comput. Math. Appl., 22 (1991), pp. 77–84.

[24]
TourignyY., Optimal H^{1}estimates for two time-discrete Galerkin approximations of a nonlinear Schrödinger equation, IMA J. Numer. Anal., 11 (1991), pp. 509–523.

[25]
TourignyY. and MorrisJ. L., An investigation into the effect of product approximation in the numerical solution of the cubic nonlinear Schrödinger equation, J. Comput. Phys., 76 (1988), pp. 103–130.

[26]
WangJ. L., A new error analysis of Crank-Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation, J. Sci. Comput., 60 (2014), pp. 390–407.

[27]
WangJ. Y., HuangY. Q., TianZ. K. and ZhouJ., Superconvergence analysis of finite element method for the time-dependent Schrödinger equation, Comput. Math. Appl., 71 (2016), pp. 1960–1972.

[28]
XuY. and ShuC.W., Local discontinuous Galerkin methods for nonlinear Schrödinger equations, J. Comput. Phys., 205 (2005), pp. 72–97.

[29]
ZhangH. M., JinJ. C. and WangJ. Y., Two-grid finite-element method for the two-dimensional time-dependent Schrödinger equation, Adv. Appl. Math. Mech., 5 (2013), pp. 180–193.

[30]
ZhaoY. M., ShiD. Y. and WangF., High accuracy analysis of a new mixed finite element method for nonlinear Schrödinger equation, Math. Numer. Sin., 37 (2015), pp. 162–177.