[1]
Z.-Z. Bai , Structured preconditioners for nonsingular matrices of block two-by-two structures, Math. Comput., 75 (2006), pp. 791–815.

[2]
Z.-Z. Bai and G.H. Golub , Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems, IMA J. Numer. Anal., 27 (2007), pp. 1–23.

[3]
Z.-Z. Bai , G.H. Golub and C.-K. Li , Optimal parameter in Hermitian and skew-Hermitian splitting method for certain two-by-two block matrices, SIAM J. Sci. Comput., 28 (2006), pp. 583–603.

[4]
Z.-Z. Bai , G.H. Golub , L.-Z. Lu and J.-F. Yin , Block triangular and skew-Hermitian splitting methods for positive-definite linear systems, SIAM J. Sci. Comput., 26 (2005), pp. 844–863.

[5]
Z.-Z. Bai , G.H. Golub and M.K. Ng , Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24 (2003), pp. 603–626.

[6]
Z.-Z. Bai , G.H. Golub and M.K. Ng , On successive-overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations, Numer. Linear Algebra Appl., 14 (2007), pp. 319–335.

[7]
Z.-Z. Bai , G.H. Golub and J.-Y. Pan , Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems, Numer. Math., 98 (2004), pp. 1–32.

[8]
Z.-Z. Bai , M.K. Ng and Z.-Q. Wang , Constraint preconditioners for symmetric indefinite matrices, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 410–433.

[9]
Z.-Z. Bai , B.N. Parlett and Z.-Q. Wang , On generalized successive overrelaxation methods for augmented linear systems, Numer. Math., 102 (2005), pp. 1–38.

[10]
Z.-Z. Bai and Z.-Q. Wang , On parameterized inexact Uzawa methods for generalized saddle point problems, Linear Algebra Appl., 428 (2008), pp. 2900–2932.

[11]
M. Benzi and G.H. Golub , A preconditioner for generalized saddle point problems, SIAM J. Matrix Anal. Appl., 26 (2004), pp. 20–41.

[12]
M. Benzi , G.H. Golub and J. Liesen , Numerical solution of saddle point problems, Acta Numer., 14 (2005), pp. 1–137.

[13]
J.H. Bramble , J.E. Pasciak and A.V. Vassilev , Analysis of the inexact Uzawa algorithm for saddle point problem, SIAM J. Numer. Anal., 34 (1997), pp. 1072–1092.

[14]
H.C. Elman and G.H. Golub , Inexact and preconditioned Uzawa algorithms for saddle point problems, SIAM J. Mumer. Anal., 31 (1994), pp. 1645–1661.

[15]
G.H. Golub and D. Vanderstraeten , On the preconditioning of matrices with skew-symmetric splittings, Numer. Algor., 25 (2000), pp. 223–239.

[17]
G.H. Golub and A.J. Wathen , An iteration for indefinite systems and its application to the Navier-Stokes equations, SIAM J. Sci. Comput., 19 (1998), pp. 530–539.

[22]
Q. Hu and J. Zou , An Iterative Method with Variable Relaxation Parameters for Saddle-Point Problems, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 317–338.

[23]
A. Klawonn , An optimal preconditioner for a class of saddle point problems with a penalty term, SIAM J. Sci. Comput., 19 (1998), pp. 540–552.

[24]
J.-F. Lu and Z.-Y. Zhang , A modified nonlinear inexact Uzawa algorithm with a variable relaxation parameter for the stabilized saddle point problem, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 1934–1957.

[25]
W. Queck , The convergence factor of preconditioned algorithms of the Arrow-Hurwicz type, SIAM J. Numer. Anal., 26 (1989), pp. 1016–1030.

[27]
Y. Saad and M.H. Schultz , GMRES: A generalized minimal residual method for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.

[28]
V. Simoncini and M. Benzi , Spectral properties of the Hermitian and skew-Hermitian splitting preconditioner for saddle point problems, SIAM J. Matrix Anal. Appl., 26 (2004), pp. 377–389.

[29]
C.-L. Wang and Z.-Z. Bai , Sufficient conditions for the convergent splittings of non-Hermitian positive definite matrices, Linear Algebra Appl., 330 (2001), pp. 215–218.

[30]
G.-F. Zhang , J.-L. Yang and S.-S. Wang , On generalized parameterized inexact Uzawa type method for a block two-by-two linear system, J. Comput. Appl. Math., 255 (2014), pp. 193–207.

[31]
W. Zulehner , Analysis of iterative methods for saddle point problems: a unified approach, Math. Comput., 71 (2002), pp. 479–505.