[1]
Bai Z.-Z., Structured preconditioners for nonsingular matrices of block two-by-two structures, Math. Comput., 75 (2006), pp. 791–815.

[2]
Bai Z.-Z. and Golub G.H., Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems, IMA J. Numer. Anal., 27 (2007), pp. 1–23.

[3]
Bai Z.-Z., Golub G.H. and Li C.-K., Optimal parameter in Hermitian and skew-Hermitian splitting method for certain two-by-two block matrices, SIAM J. Sci. Comput., 28 (2006), pp. 583–603.

[4]
Bai Z.-Z., Golub G.H., Lu L.-Z. and Yin J.-F., Block triangular and skew-Hermitian splitting methods for positive-definite linear systems, SIAM J. Sci. Comput., 26 (2005), pp. 844–863.

[5]
Bai Z.-Z., Golub G.H. and Ng M.K., Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24 (2003), pp. 603–626.

[6]
Bai Z.-Z., Golub G.H. and Ng M.K., On successive-overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations, Numer. Linear Algebra Appl., 14 (2007), pp. 319–335.

[7]
Bai Z.-Z., Golub G.H. and Pan J.-Y., Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems, Numer. Math., 98 (2004), pp. 1–32.

[8]
Bai Z.-Z., Ng M.K. and Wang Z.-Q., Constraint preconditioners for symmetric indefinite matrices, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 410–433.

[9]
Bai Z.-Z., Parlett B.N. and Wang Z.-Q., On generalized successive overrelaxation methods for augmented linear systems, Numer. Math., 102 (2005), pp. 1–38.

[10]
Bai Z.-Z. and Wang Z.-Q., On parameterized inexact Uzawa methods for generalized saddle point problems, Linear Algebra Appl., 428 (2008), pp. 2900–2932.

[11]
Benzi M. and Golub G.H., A preconditioner for generalized saddle point problems, SIAM J. Matrix Anal. Appl., 26 (2004), pp. 20–41.

[12]
Benzi M., Golub G.H. and Liesen J., Numerical solution of saddle point problems, Acta Numer., 14 (2005), pp. 1–137.

[13]
Bramble J.H., Pasciak J.E. and Vassilev A.V., Analysis of the inexact Uzawa algorithm for saddle point problem, SIAM J. Numer. Anal., 34 (1997), pp. 1072–1092.

[14]
Elman H.C. and Golub G.H., Inexact and preconditioned Uzawa algorithms for saddle point problems, SIAM J. Mumer. Anal., 31 (1994), pp. 1645–1661.

[15]
Golub G.H. and Vanderstraeten D., On the preconditioning of matrices with skew-symmetric splittings, Numer. Algor., 25 (2000), pp. 223–239.

[16]
Golub G.H. and Van Loan C.F., Matrix Computations, 3rd Edition, The Johns Hopkins University Press, Baltimore, 1996.

[17]
Golub G.H. and Wathen A.J., An iteration for indefinite systems and its application to the Navier-Stokes equations, SIAM J. Sci. Comput., 19 (1998), pp. 530–539.

[18]
Golub G.H., Wu X. and Yuan J.-Y., SOR-like methods for augmented systems, BIT, 41 (2001), pp. 71–85.

[19]
Huang N. and Ma C.-F., The BGS-Uzawa and BJ-Uzawa iterative methods for solving the saddle point problem, Appl. Math. Comput., 256 (2015), pp. 94–108.

[20]
Huang N. and Ma C.-F., The nonlinear inexact Uzawa hybrid algorithms based on one-step Newton method for solving nonlinear saddle-point problems, Appl. Math. Comput., 270 (2015), pp. 291–311.

[21]
Huang N. and Ma C.-F., An inexact relaxed DPSS preconditioner for saddle point problem, Appl. Math. Comput., 265 (2015), pp. 431–447.

[22]
Hu Q. and Zou J., An Iterative Method with Variable Relaxation Parameters for Saddle-Point Problems, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 317–338.

[23]
Klawonn A., An optimal preconditioner for a class of saddle point problems with a penalty term, SIAM J. Sci. Comput., 19 (1998), pp. 540–552.

[24]
Lu J.-F. and Zhang Z.-Y., A modified nonlinear inexact Uzawa algorithm with a variable relaxation parameter for the stabilized saddle point problem, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 1934–1957.

[25]
Queck W., The convergence factor of preconditioned algorithms of the Arrow-Hurwicz type, SIAM J. Numer. Anal., 26 (1989), pp. 1016–1030.

[26]
Saad Y., Iterative Methods for Sparse Linear Systems, PWS Publishing Company, Boston, 1996.

[27]
Saad Y. and Schultz M.H., GMRES: A generalized minimal residual method for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.

[28]
Simoncini V. and Benzi M., Spectral properties of the Hermitian and skew-Hermitian splitting preconditioner for saddle point problems, SIAM J. Matrix Anal. Appl., 26 (2004), pp. 377–389.

[29]
Wang C.-L. and Bai Z.-Z., Sufficient conditions for the convergent splittings of non-Hermitian positive definite matrices, Linear Algebra Appl., 330 (2001), pp. 215–218.

[30]
Zhang G.-F., Yang J.-L. and Wang S.-S., On generalized parameterized inexact Uzawa type method for a block two-by-two linear system, J. Comput. Appl. Math., 255 (2014), pp. 193–207.

[31]
Zulehner W., Analysis of iterative methods for saddle point problems: a unified approach, Math. Comput., 71 (2002), pp. 479–505.