[1]
Isojima T., Kato H., and Hamano K., Effective viscosities of a phase-separating binary mixture imposed to shear, Physics Letters A, 240(4) (1998), pp. 271–275.

[2]
Chen X. B., Niu L. S. and Shi H. J., Modeling the phase separation in binary lipid membrane under externally imposed oscillatory shear flow, Colloid. Surface. B., 65(2) (2008), pp. 203–212.

[3]
Qin R. S., Thermodynamic properties of phase separation in shear flow, Computers & Fluids, 117(2015), pp. 11–16.

[4]
XU A. G., Gonnella G., and Lamura A., Phase-separating binary fluids under oscillatory shear, Phys. Rev. E, 67(5) (2003), 056105.

[5]
Cui J., Ma Z. W., Li W., and Jiang W., Self-assembly of diblock copolymers under shear flow: A simulation study by combining the self-consistent field and lattice boltzmann method, Chem. Phys., 386(1) (2011), pp. 81–87.

[6]
Wagner A. J. and Yeomans J. M., Phase separation under shear in two-dimensional binary fluids, Phys. Rev. E, 59(4) (1999), pp. 4366–4373.

[7]
Chen X. B., Niu L. S., and Shi H. J., Numerical simulation of the phase separation in binary lipid membrane under the effect of stationary shear flow, Biophys. chem., 135(1) (2008), pp. 84–94.

[8]
Lamura A. and Gonnella G., Lattice boltzmann simulations of segregating binary fluid mixtures in shear flow, Physica A, 294(3) (2001), pp. 295–312.

[9]
LI Y. C., Shi R. P., Wang C. P., Liu X. J., and Wang Y. Z., Phase field study on the effect of shear flow on polymer phase separation, Procedia Engineering, 27(2012), pp. 1502–1507.

[10]
Xie F., Zhou C. X., Yu W., and Liu J. Y., Heterogeneous polymeric reaction under shear flow, J. appl. polym. sci., 109(4) (2008), pp. 2737–2745.

[11]
Xie F., Zhou C. X., and Yu W., Effects of small-amplitude oscillatory shear on polymeric reaction, Polym. Composite., 29(1) (2008), pp. 72–76.

[12]
Huo Y. L., Jiang X. L., Zhang H. D., and Yang Y. L., Hydrodynamic effects on phase separation of binary mixtures with reversible chemical reaction, J. Chem. Phys., 118(21) (2003), pp. 9830–9837.

[13]
Furtado K. and Yeomans J. M., Lattice boltzmann simulations of phase separation in chemically reactive binary fluids, Phys. Rev. E, 73(6) (2006), 066124.

[14]
Yan Y. Y., Zu Y. Q., and Dong B., LBM, a useful tool for mesoscale modelling of single-phase and multiphase flow, Appl. Therm. Eng., 31(5) (2001), pp. 649–655.

[15]
Leclaire S., Pellerin N., Reggio M., and Yves Trépanier J., Multiphase flow modeling of spinodal decomposition based on the cascaded lattice Boltzmann method, Physica A, 406(2014), pp. 307–319.

[16]
Huang H. B., Huang J. J., and Lu X. Y., A mass-conserving axisymmetric multiphase lattice boltzmann method and its application in simulation of bubble rising, J. Comput. Phys., 269 (2014), pp. 386–402.

[17]
Zhang J. F., Wang L. M., and Ouyang J., Lattice boltzmann model for the volume-averaged navier-stokes equations, EPL (Europhysics Letters), 107(2) (2014), 20001.

[18]
Fakhari A. and Lee T. H., Numerics of the lattice Boltzmann method on nonuniform grids: standard lbm and finite-difference lbm, Computers & Fluids, 107 (2015), pp. 205–213.

[19]
Succi S., Foti E., and Higuera F., Three-dimensional flows in complex geometries with the lattice Boltzmann method, EPL (Europhysics Letters), 10(5) (1989), pp. 433.

[20]
Higuera F. J.
et al, Boltzmann approach to lattice gas simulations, EPL (Europhysics Letters), 9(7) (1989), pp. 663.

[21]
Xu A. G., Gonnella G., and Lamura A., Phase separation of incompressible binary fluids with lattice Boltzmann methods, Physica A, 331(1) (2004), pp. 10–22.

[22]
Swift M. R., Osborn W. R., and Yeomans J. M., Lattice Boltzmann simulation of nonideal fluids, Phys. Rev. Lett., 75(5) (1995), pp. 830.

[23]
Swift M. R., Orlandini E., Osborn W. R., and Yeomans J. M., Lattice Boltzmann simulations of liquid-gas and binary fluid systems, Phys. Rev.E, 54(5) (1996), pp. 5041.

[24]
Chen S. Y., Chen H. D., Martnez D. and Matthaeus W., Lattice Boltzmann model for simulation of magnetohydrodynamics, Phys. Rev. Lett., 67(27) (1991), pp. 3776.

[25]
Qian Y. H., D’Humières D.Q., and Lallemand P., Lattice BGK models for Navier-Stokes equation, EPL (Europhysics Letters), 17(6) (1992), pp. 479.

[26]
Qian Y. H. and Orszag S. A., Lattice bgk models for the navier-stokes equation: Nonlinear deviation in compressible regimes, EPL (Europhysics Letters), 21(3) (1993), pp. 255.

[27]
Shi B. C. and Guo Z. L., Lattice Boltzmann model for nonlinear convection-diffusion equations, Phys. Rev. E, 79(1) (2009), 016701.

[28]
J. S , Ouyang J., Wang X. D., and Yang B. X., Lattice Boltzmann method coupled with the oldroyd-b constitutive model for a viscoelastic fluid, Phys. Rev. E, 88(5) (2013), 053304.

[29]
Wagner A. J. and Pagonabarraga I., Lees–edwards boundary conditions for lattice boltzmann, J. stat. phys., 107(1-2) (2002), pp. 521–537.

[30]
Zou Q. S. and He X. Y., On pressure and velocity boundary conditions for the lattice boltzmann bgk model, Phys. Fluids, 9(6) (1957), pp. 1591–1598.

[31]
Tanaka H. and Araki T., Spontaneous double phase separation induced by rapid hydrodynamic coarsening in two-dimensional fluid mixtures, Phys. Rev. Lett., 81(2) (1989), pp. 389.