[1]
Isojima, T., Kato, H., and Hamano, K., Effective viscosities of a phase-separating binary mixture imposed to shear, Physics Letters A, 240(4) (1998), pp. 271–275.

[2]
Chen, X. B., Niu, L. S. and Shi, H. J., Modeling the phase separation in binary lipid membrane under externally imposed oscillatory shear flow, Colloid. Surface. B., 65(2) (2008), pp. 203–212.

[3]
Qin, R. S., Thermodynamic properties of phase separation in shear flow, Computers & Fluids, 117(2015), pp. 11–16.

[4]
XU, A. G., Gonnella, G., and Lamura, A., Phase-separating binary fluids under oscillatory shear, Phys. Rev. E, 67(5) (2003), 056105.

[5]
Cui, J., Ma, Z. W., Li, W., and Jiang, W., Self-assembly of diblock copolymers under shear flow: A simulation study by combining the self-consistent field and lattice boltzmann method, Chem. Phys., 386(1) (2011), pp. 81–87.

[6]
Wagner, A. J. and Yeomans, J. M., Phase separation under shear in two-dimensional binary fluids, Phys. Rev. E, 59(4) (1999), pp. 4366–4373.

[7]
Chen, X. B., Niu, L. S., and Shi, H. J., Numerical simulation of the phase separation in binary lipid membrane under the effect of stationary shear flow, Biophys. chem., 135(1) (2008), pp. 84–94.

[8]
Lamura, A. and Gonnella, G., Lattice boltzmann simulations of segregating binary fluid mixtures in shear flow, Physica A, 294(3) (2001), pp. 295–312.

[9]
LI, Y. C., Shi, R. P., Wang, C. P., Liu, X. J., and Wang, Y. Z., Phase field study on the effect of shear flow on polymer phase separation, Procedia Engineering, 27(2012), pp. 1502–1507.

[10]
Xie, F., Zhou, C. X., Yu, W., and Liu, J. Y., Heterogeneous polymeric reaction under shear flow, J. appl. polym. sci., 109(4) (2008), pp. 2737–2745.

[11]
Xie, F., Zhou, C. X., and Yu, W., Effects of small-amplitude oscillatory shear on polymeric reaction, Polym. Composite., 29(1) (2008), pp. 72–76.

[12]
Huo, Y. L., Jiang, X. L., Zhang, H. D., and Yang, Y. L., Hydrodynamic effects on phase separation of binary mixtures with reversible chemical reaction, J. Chem. Phys., 118(21) (2003), pp. 9830–9837.

[13]
Furtado, K. and Yeomans, J. M., Lattice boltzmann simulations of phase separation in chemically reactive binary fluids, Phys. Rev. E, 73(6) (2006), 066124.

[14]
Yan, Y. Y., Zu, Y. Q., and Dong, B., LBM, a useful tool for mesoscale modelling of single-phase and multiphase flow, Appl. Therm. Eng., 31(5) (2001), pp. 649–655.

[15]
Leclaire, S., Pellerin, N., Reggio, M., and Yves Trépanier, J., Multiphase flow modeling of spinodal decomposition based on the cascaded lattice Boltzmann method, Physica A, 406(2014), pp. 307–319.

[16]
Huang, H. B., Huang, J. J., and Lu, X. Y., A mass-conserving axisymmetric multiphase lattice boltzmann method and its application in simulation of bubble rising, J. Comput. Phys., 269 (2014), pp. 386–402.

[17]
Zhang, J. F., Wang, L. M., and Ouyang, J., Lattice boltzmann model for the volume-averaged navier-stokes equations, EPL (Europhysics Letters), 107(2) (2014), 20001.

[18]
Fakhari, A. and Lee, T. H., Numerics of the lattice Boltzmann method on nonuniform grids: standard lbm and finite-difference lbm, Computers & Fluids, 107 (2015), pp. 205–213.

[19]
Succi, S., Foti, E., and Higuera, F., Three-dimensional flows in complex geometries with the lattice Boltzmann method, EPL (Europhysics Letters), 10(5) (1989), pp. 433.

[20]
Higuera, F. J.
et al, Boltzmann approach to lattice gas simulations, EPL (Europhysics Letters), 9(7) (1989), pp. 663.

[21]
Xu, A. G., Gonnella, G., and Lamura, A., Phase separation of incompressible binary fluids with lattice Boltzmann methods, Physica A, 331(1) (2004), pp. 10–22.

[22]
Swift, M. R., Osborn, W. R., and Yeomans, J. M., Lattice Boltzmann simulation of nonideal fluids, Phys. Rev. Lett., 75(5) (1995), pp. 830.

[23]
Swift, M. R., Orlandini, E., Osborn, W. R., and Yeomans, J. M., Lattice Boltzmann simulations of liquid-gas and binary fluid systems, Phys. Rev.E, 54(5) (1996), pp. 5041.

[24]
Chen, S. Y., Chen, H. D., Martnez, D. and Matthaeus, W., Lattice Boltzmann model for simulation of magnetohydrodynamics, Phys. Rev. Lett., 67(27) (1991), pp. 3776.

[25]
Qian, Y. H., D’Humières, D.Q., and Lallemand, P., Lattice BGK models for Navier-Stokes equation, EPL (Europhysics Letters), 17(6) (1992), pp. 479.

[26]
Qian, Y. H. and Orszag, S. A., Lattice bgk models for the navier-stokes equation: Nonlinear deviation in compressible regimes, EPL (Europhysics Letters), 21(3) (1993), pp. 255.

[27]
Shi, B. C. and Guo, Z. L., Lattice Boltzmann model for nonlinear convection-diffusion equations, Phys. Rev. E, 79(1) (2009), 016701.

[28]
J. S, , Ouyang, J., Wang, X. D., and Yang, B. X., Lattice Boltzmann method coupled with the oldroyd-b constitutive model for a viscoelastic fluid, Phys. Rev. E, 88(5) (2013), 053304.

[29]
Wagner, A. J. and Pagonabarraga, I., Lees–edwards boundary conditions for lattice boltzmann, J. stat. phys., 107(1-2) (2002), pp. 521–537.

[30]
Zou, Q. S. and He, X. Y., On pressure and velocity boundary conditions for the lattice boltzmann bgk model, Phys. Fluids, 9(6) (1957), pp. 1591–1598.

[31]
Tanaka, H. and Araki, T., Spontaneous double phase separation induced by rapid hydrodynamic coarsening in two-dimensional fluid mixtures, Phys. Rev. Lett., 81(2) (1989), pp. 389.