Skip to main content Accessibility help
×
Home

Multidimensional Iterative Filtering Method for the Decomposition of High–Dimensional Non–Stationary Signals

  • Antonio Cicone (a1) and Haomin Zhou (a2)

Abstract

Iterative Filtering (IF) is an alternative technique to the Empirical Mode Decomposition (EMD) algorithm for the decomposition of non–stationary and non–linear signals. Recently in [3] IF has been proved to be convergent for any L 2 signal and its stability has been also demonstrated through examples. Furthermore in [3] the so called Fokker–Planck (FP) filters have been introduced. They are smooth at every point and have compact supports. Based on those results, in this paper we introduce the Multidimensional Iterative Filtering (MIF) technique for the decomposition and time–frequency analysis of non–stationary high–dimensional signals. We present the extension of FP filters to higher dimensions. We prove convergence results under general sufficient conditions on the filter shape. Finally we illustrate the promising performance of MIF algorithm, equipped with high–dimensional FP filters, when applied to the decomposition of two dimensional signals.

Copyright

Corresponding author

*Corresponding author. Email addresses: antonio.cicone@univaq.it (A. Cicone), hmzhou@math.gatech.edu (H. M. Zhou)

References

Hide All
[1] Auger, F. and Flandrin, P., Improving the readability of time-frequency and time-scale representations by the reassignment method, IEEE T. Signal Proces., 43 (1995), pp. 10681089.
[2] Boashash, B., Estimating and interpreting the instantaneous frequency of a signal. I. fundamentals, P. IEEE, 80 (1992), pp. 520538.
[3] Cicone, A., Liu, J. and Zhou, H., Adaptive local iterative filtering for signal decomposition and instantaneous frequency analysis, Appl. Comput. Harmon. A., 41 (2016), pp. 384411, http://dx.doi.org/10.1016/j.acha.2016.03.001.
[4] Cicone, A., Liu, J. and Zhou, H., Hyperspectral chemical plume detection algorithms based on multidimensional iterative filtering decomposition, Phil. Trans. R. Soc. A, 374 (2016), doi: 10.1098/rsta.2015.0196.
[5] Clausel, M., Oberlin, T. and Perrier, V., The monogenic synchrosqueezed wavelet transform: a tool for the decomposition/demodulation of am–fmimages, Appl. Comput. Harmon. A., 39 (2015), pp. 450486.
[6] Cohen, L., Time-Frequency Analysis, vol. 1406, Prentice Hall PTR Englewood Cliffs, NJ:, 1995.
[7] Daubechies, I., Lu, J. and Wu, H. T., Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool, Appl. Comput. Harmon. A., 30 (2011), pp. 243261.
[8] Daubechies, I., Wang, Y. G. and Wu, H. T., Conceft: concentration of frequency and time via a multitapered synchrosqueezed transform, Phil. Trans. R. Soc. A, 374 (2016), pp. 20150193.
[9] Dragomiretskiy, K. and Zosso, D., Variational mode decomposition, IEEE T. Signal. Proces., 62 (2014), pp. 531544.
[10] Gilles, J., Empirical wavelet transform, IEEE T. Signal. Proces., 61 (2013), pp. 39994010.
[11] Gilles, J., Tran, G. and Osher, S., 2D empirical transforms, wavelets, ridgelets, and curvelets revisited, SIAM J. Imaging Sci., 7 (2014), pp. 157186.
[12] Havlicek, J. P., Havlicek, J. W., Mamuya, N. D. and Bovik, A. C., Skewed 2D Hilbert transforms and computed am-fm models, in Image Processing, 1998. ICIP 98. Proceedings., vol. 1, IEEE, 1998, pp. 602606.
[13] Hou, T. Y. and Shi, Z., Adaptive data analysis via sparse time-frequency representation, Adv. Adapt. Data Anal., 3 (2011), pp. 128.
[14] Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C. and Liu, H. H., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. Royal Soc. London. Ser. A, 454 (1998), pp. 903995.
[15] Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G. and Woollen, J., et al., The ncep/ncar 40–year reanalysis project, Bulletin of the American meteorological Society, 77 (1996), pp. 437471.
[16] Lin, C. Y., Li, S. and Wu, H. T., Wave-shape function analysis–when cepstrum meets time-frequency analysis, preprint, (2016).
[17] Lin, L., Wang, Y., and Zhou, H., Iterative filtering as an alternative algorithm for empirical mode decomposition, Adv. Adapt. Data Anal., 1 (2009), pp. 543560.
[18] Lorenzo-Ginori, J. V., An approach to the 2d Hilbert transform for image processing applications, in International Conference Image Analysis and Recognition, Springer, 2007, pp. 157165.
[19] Manolakis, D. and Shaw, G., Detection algorithms for hyperspectral imaging applications, IEEE Signal Proc. Mag., 19 (2002), pp. 2943.
[20] Pustelnik, N., Borgnat, P. and Flandrin, P., A multicomponent proximal algorithm for empirical mode decomposition, in Signal Processing Conference (EUSIPCO), 2012 Proceedings of the 20th European, IEEE, 2012, pp. 1880–1884.
[21] Schmitt, J., Pustelnik, N., Borgnat, P., and Flandrin, P., 2D Hilbert-huang transform, in 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2014, pp. 5377–5381.
[22] Selesnick, I. W., Resonance-based signal decomposition: A new sparsity-enabled signal analysis method, Sig. Proc., 91 (2011), pp. 27932809.
[23] Takeda, H., Farsiu, S. and Milanfar, P., Kernel regression for image processing and reconstruction, IEEE T. Image. Process., 16 (2007), pp. 349366.
[24] Wei, D. and Bovik, A., On the instantaneous frequencies of multicomponent am-fm signals, IEEE Signal Proc. Let., 5 (1998), pp. 8486.
[25] Wu, H. T., Flandrin, P. and Daubechies, I., One or two frequencies? the synchrosqueezing answers, Adv. Adap. Data An., 3 (2011), pp. 2939.
[26] Wu, Z. and Huang, N. E., Ensemble empirical mode decomposition: a noise-assisted data analysis method, Adv. Adap. Data An., 1 (2009), pp. 141.
[27] Wu, Z., Huang, N. E. and Chen, X., The multi–dimensional ensemble empirical mode decomposition method, Adv. Adap. Data An., 1 (2009), pp. 339372.
[28] Yang, H. and Ying, L., Synchrosqueezed wave packet transform for two–dimensional mode decomposition, SIAM J. Imaging Sci., 6 (2013), pp. 19792009.
[29] Yang, H. and Ying, L., Synchrosqueezed curvelet transform for two–dimensional mode decomposition, SIAM J. Math. Anal., 46 (2014), pp. 20522083.

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed