Skip to main content
×
×
Home

A Multilevel Method for the Solution of Time Dependent Optimal Transport

  • Eldad Haber (a1) and Raya Horesh (a1)
Abstract

In this paper we present a new computationally efficient numerical scheme for the minimizing flow for the computation of the optimal L2 mass transport mapping using the fluid approach. We review the method and discuss its numerical properties. We then derive a new scaleable, efficient discretization and a solution technique for the problem and show that the problem is equivalent to a mixed form formulation of a nonlinear fluid flow in porous media. We demonstrate the effectiveness of our approach using a number of numerical experiments.

Copyright
Corresponding author
*Email address: haber@math.ubc.ca (E. Haber)
References
Hide All
[1]Ascher, U.. Numerical Methods for Evolutionary Differential Equations, SIAM, Philadelphia 2008.
[2]Ambrosio, L.. Lecture Notes on Optimal Transport Theory, CIME Series of Springer Lecture Notes, Euro Summer School Mathematical Aspects of Evolving Interfaces, Madeira, Portugal, Springer-Verlag, New York, 2000.
[3]Angenent, S.. Haker, S. and Tannenbaum, A.. Minimizing flows for the Monge-Kantorovich problem, SIAM J. Math. Analysis 35 (2003), pp. 6197.
[4]Bear, J.. Dynamics of Fluids in Porous Media, Dover Publications, New York, (1972).
[5]Benamou, J.D. and Brenier, Y.. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84 (2000), pp. 375393.
[6]Benzi, M., Golub, G.H., and Liesen, J.. Numerical solution of saddle point problems, Acta Numerica, 14 (2005), pp. 1137.
[7] Edited by Lorenz, T. Biegler, Ghattas, Omar, Heinkenschloss, Matthias, Keyes, David, and Waanders, Bart van Bloemen. Real-Time PDE-Constrained Optimization, SIAM Philadelphia (2007).
[8]Borz, A. and Kunisch, K.. A globalization strategy for the multigrid solution of elliptic optimal control problems, Optimization Methods and Software, 21(3) (2006), pp. 445459.
[9]Brezzi, F. and Fortin, M.. Mixed and Hybrid Finite Element Methods, Springer-Verlag, (1991).
[10]Byrd, R.H., Curtis, F.E., and Nocedal, J.. An Inexact SQP Method for Equality Constrained Optimization, SIAM J. on Optimization, 19 (2008), pp. 351369.
[11]Chartrand, R., Vixie, K., Wohlberg, B., and Bollt, E.. A gradient descent solution to the Monge-Kantorovich problem, submitted to SIAM J. Sci. Comput., (2005).
[12]Cullen, M. and Purser, R.. An extended Lagrangian theory of semigeostrophic frontogenesis, J. Atmos. Sci., 41 (1984), pp. 14771497.
[13]Dean, E.J., Glowinski, R.. Numerical methods for fully nonlinear elliptic equations of the Monge-Amp‘ere type, to appear, Comput. Methods Appl. Mech (2008).
[14]Delzanno, G.L., Chacon, L., Finn, J.M., Chung, Y., and Lapenta, G.. An optimal robust equidis-tribution method for two-dimensional grid adaptation based on Monge-Kantorovich optimization, Journal of Computational Physics archive, 227(23), (2008), pp. 98419864.
[15]Evans, L.C.. Partial differential equations and Monge-Kantorovich mass transfer, in Current Developments in Mathematics, International Press, Boston, MA, 1999, pp. 65126.
[16]Fletcher, R., Leyffer, S., and Ph.Toint, L.. A Brief History of Filter Methods, SIAG/Optimization Views-and-News, 18 (2007).
[17]Gunzburger, M.D.. Prespectives in flow control and optimization, SIAM, Philadelphia, 2003.
[18]Haber, E. and Ascher, U. and Oldenburg, D.. On Optimization Techniques for Solving Nonlinear Inverse Problems, Inverse Problems, 16 (2000), pp. 12631280.
[19]Haber, E., Rehman, T., Tannenbaum, A.. An Efficient Numerical Method for the Solution of the L2 Optimal Mass Transfer Problem, to appear, SIAM J. on Scientific Computing.
[20]Jenkins, E.W., Kelley, C.T., Miller, C.T., and Kees, C.E.. An Aggregation-based Domain Decomposition Preconditioner for Groundwater Flow, SIAM J. Sci. Comp., (23) (2001), pp. 430441.
[21]Kantorovich, L.V.. On a problem of Monge, Uspekhi Mat. Nauk., 3 (1948), pp. 225226.
[22]Moulton, J.D., Dendy, J.E., and Hyman, J.M.. The black box multigrid numerical homogenization algorithm, J. Comput. Phys., 141 (1998) pp. 129.
[23]Nicolaides, R.A.. Existence, Uniqueness and Approximation for Generalized Saddle Point Problems, SIAM Journal on Numerical Analysis, 18 (1982), pp. 349357.
[24]Oberman, A.. Wide stencil finite difference schemes for the elliptic Monge-Ampere equation and functions of the eigenvalues of the Hessian, Discrete and Continuous Dynamical Systems series B (DCDS B), 10 (2008), pp. 221238.
[25]Oliker, V. and Prussner, L.. On the numerical solution of the equation and its discretizations, Numerische Mathematik, 54 (1988), pp. 271293.
[26]Rachev, S. and Rüschendorf, L.. Mass Transportation Problems, Vol. I, Probab. Appl., Springer-Verlag, New York, 1998.
[27]Rubinstein, J. and Wolansky, G.. Intensity control with a free-form lens, J. Opt. Soc. Am. A, 24 (2007), pp. 463469.
[28]Ruge, J., Stben, K.. Algebraic multigrid, in: McCormick, S.F.. (Ed.), Multigrid Methods, Frontiers in Applied Mathematics, (3), SIAM, Philadelphia (1987), pp. 73130.
[29]Saad, Y. and Schultz, M.H.. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAMJ. Sci. Stat. Comput., 7 (1986), pp. 856869.
[30]Trottenberg, U., Oosterlee, C., and Schulle, A.. Multigrid, Academic Press, 2001.
[31]Villani, C.. Topics in Optimal Transportation, Graduate Studies in Mathematics, vol. 58, AMS, Providence, RI, 2003.
[32]Volkwein, S.. Mesh-Independence of Lagrange-SQP Methods with Lipschitz-Continuous Lagrange Multiplier Updates, Optimization Methods and Software, 17 (2002), pp. 77111.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Numerical Mathematics: Theory, Methods and Applications
  • ISSN: 1004-8979
  • EISSN: 2079-7338
  • URL: /core/journals/numerical-mathematics-theory-methods-and-applications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed