[1]Ascher, U.. Numerical Methods for Evolutionary Differential Equations, SIAM, Philadelphia 2008.

[2]Ambrosio, L.. Lecture Notes on Optimal Transport Theory, CIME Series of Springer Lecture Notes, Euro Summer School Mathematical Aspects of Evolving Interfaces, Madeira, Portugal, Springer-Verlag, New York, 2000.

[3]Angenent, S.. Haker, S. and Tannenbaum, A.. Minimizing flows for the Monge-Kantorovich problem, SIAM J. Math. Analysis 35 (2003), pp. 61–97.

[4]Bear, J.. Dynamics of Fluids in Porous Media, Dover Publications, New York, (1972).

[5]Benamou, J.D. and Brenier, Y.. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84 (2000), pp. 375–393.

[6]Benzi, M., Golub, G.H., and Liesen, J.. Numerical solution of saddle point problems, Acta Numerica, 14 (2005), pp. 1–137.

[7] Edited by Lorenz, T. Biegler, Ghattas, Omar, Heinkenschloss, Matthias, Keyes, David, and Waanders, Bart van Bloemen. Real-Time PDE-Constrained Optimization, SIAM Philadelphia (2007).

[8]Borz, A. and Kunisch, K.. A globalization strategy for the multigrid solution of elliptic optimal control problems, Optimization Methods and Software, 21(3) (2006), pp. 445–459.

[9]Brezzi, F. and Fortin, M.. Mixed and Hybrid Finite Element Methods, Springer-Verlag, (1991).

[10]Byrd, R.H., Curtis, F.E., and Nocedal, J.. An Inexact SQP Method for Equality Constrained Optimization, SIAM J. on Optimization, 19 (2008), pp. 351–369.

[11]Chartrand, R., Vixie, K., Wohlberg, B., and Bollt, E.. A gradient descent solution to the Monge-Kantorovich problem, submitted to SIAM J. Sci. Comput., (2005).

[12]Cullen, M. and Purser, R.. An extended Lagrangian theory of semigeostrophic frontogenesis, J. Atmos. Sci., 41 (1984), pp. 1477–1497.

[13]Dean, E.J., Glowinski, R.. Numerical methods for fully nonlinear elliptic equations of the Monge-Amp‘ere type, to appear, Comput. Methods Appl. Mech (2008).

[14]Delzanno, G.L., Chacon, L., Finn, J.M., Chung, Y., and Lapenta, G.. An optimal robust equidis-tribution method for two-dimensional grid adaptation based on Monge-Kantorovich optimization, Journal of Computational Physics archive, 227(23), (2008), pp. 9841–9864.

[15]Evans, L.C.. Partial differential equations and Monge-Kantorovich mass transfer, in Current Developments in Mathematics, International Press, Boston, MA, 1999, pp. 65–126.

[16]Fletcher, R., Leyffer, S., and Ph.Toint, L.. A Brief History of Filter Methods, SIAG/Optimization Views-and-News, 18 (2007).

[17]Gunzburger, M.D.. Prespectives in flow control and optimization, SIAM, Philadelphia, 2003.

[18]Haber, E. and Ascher, U. and Oldenburg, D.. On Optimization Techniques for Solving Nonlinear Inverse Problems, Inverse Problems, 16 (2000), pp. 1263–1280.

[19]Haber, E., Rehman, T., Tannenbaum, A.. An Efficient Numerical Method for the Solution of the L2 Optimal Mass Transfer Problem, to appear, SIAM J. on Scientific Computing.

[20]Jenkins, E.W., Kelley, C.T., Miller, C.T., and Kees, C.E.. An Aggregation-based Domain Decomposition Preconditioner for Groundwater Flow, SIAM J. Sci. Comp., (23) (2001), pp. 430–441.

[21]Kantorovich, L.V.. On a problem of Monge, Uspekhi Mat. Nauk., 3 (1948), pp. 225–226.

[22]Moulton, J.D., Dendy, J.E., and Hyman, J.M.. The black box multigrid numerical homogenization algorithm, J. Comput. Phys., 141 (1998) pp. 1–29.

[23]Nicolaides, R.A.. Existence, Uniqueness and Approximation for Generalized Saddle Point Problems, SIAM Journal on Numerical Analysis, 18 (1982), pp. 349–357.

[24]Oberman, A.. Wide stencil finite difference schemes for the elliptic Monge-Ampere equation and functions of the eigenvalues of the Hessian, Discrete and Continuous Dynamical Systems series B (DCDS B), 10 (2008), pp. 221–238.

[25]Oliker, V. and Prussner, L.. On the numerical solution of the equation and its discretizations, Numerische Mathematik, 54 (1988), pp. 271–293. [26]Rachev, S. and Rüschendorf, L.. Mass Transportation Problems, Vol. I, Probab. Appl., Springer-Verlag, New York, 1998.

[27]Rubinstein, J. and Wolansky, G.. Intensity control with a free-form lens, J. Opt. Soc. Am. A, 24 (2007), pp. 463–469.

[28]Ruge, J., Stben, K.. Algebraic multigrid, in: McCormick, S.F.. (Ed.), Multigrid Methods, Frontiers in Applied Mathematics, (3), SIAM, Philadelphia (1987), pp. 73–130.

[29]Saad, Y. and Schultz, M.H.. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAMJ. Sci. Stat. Comput., 7 (1986), pp. 856–869.

[30]Trottenberg, U., Oosterlee, C., and Schulle, A.. Multigrid, Academic Press, 2001.

[31]Villani, C.. Topics in Optimal Transportation, Graduate Studies in Mathematics, vol. 58, AMS, Providence, RI, 2003.

[32]Volkwein, S.. Mesh-Independence of Lagrange-SQP Methods with Lipschitz-Continuous Lagrange Multiplier Updates, Optimization Methods and Software, 17 (2002), pp. 77–111.