Skip to main content
×
×
Home

A Multiple Interval Chebyshev-Gauss-Lobatto Collocation Method for Ordinary Differential Equations

  • Zhong-Qing Wang (a1) and Jun Mu (a1)
Abstract
Abstract

We introduce a multiple interval Chebyshev-Gauss-Lobatto spectral collocation method for the initial value problems of the nonlinear ordinary differential equations (ODES). This method is easy to implement and possesses the high order accuracy. In addition, it is very stable and suitable for long time calculations. We also obtain the hp-version bound on the numerical error of the multiple interval collocation method under H 1-norm. Numerical experiments confirm the theoretical expectations.

Copyright
Corresponding author
*Corresponding author. Email addresses: zqwang@usst.edu.cn (Z.-Q. Wang), mujun06@163.com (J. Mu)
References
Hide All
[1] Bar-Yoseph P. Z., Fisher D. and Gottlieb O., Spectral element methods for nonlinear spatio-temporal dynamics of an Euler-Bernoulli beam, Comput. Mech., vol. 19, no. 2 (1996), pp. 136151.
[2] Bar-Yoseph P. Z. and Moses E., Space-time spectral element methods for unsteady convection-diffusion problems, Int. J. Numer. Methods for Heat & Fluid Flow, vol. 7, no. 2-3 (1997), pp. 215235.
[3] Bernardi C. and Maday Y., Spectral method, in Handbook of Numerical Analysis, vol. 5, 209485, edited by Ciarlet P. G. and Lions J. L., North-Holland, Amsterdam, 1997.
[4] Boyd J. P., Chebyshev and Fourier Spectral Methods, Springer-Verlag, Berlin, 1989.
[5] Canuto C., Hussaini M. Y., Quarteroni A. and Zang T. A., Spectral Methods: Fundamentals in Single Domains, Springer-Verlag, Berlin, 2006.
[6] Canuto C., Hussaini M. Y., Quarteroni A. and Zang T. A., Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics, Springer-Verlag, Berlin, 2007.
[7] Dutt P., Spectral methods for initial-boundary value problems-an alternative approach, SIAM J. Numer. Anal., vol. 27, no. 4 (1990), pp. 885903.
[8] Funaro D., Polynomial Approximations of Differential Equations, Springer-Verlag, Berlin, 1992.
[9] Glenn I., Brian S. and Rodney W., Spectral methods in time for a class of parabolic partial differential equations, J. Comput. Phys., vol. 102, no. 1 (1992), pp. 8897.
[10] Guo B.-Y., Spectral Methods and Their Applications, World Scientific, Singapore, 1998.
[11] Guo B.-Y. and Wang Z.-Q., Legendre-Gauss collocation methods for ordinary differential equations, Adv. Comput. Math., vol. 30, no. 3 (2009), pp. 249280.
[12] Guo B.-Y. and Wang Z.-Q., A spectral collocationmethod for solving initial value problems of first order ordinary differential equations, Discrete Contin. Dyn. Syst. Ser. B, vol. 14, no. 3 (2010), pp. 10291054.
[13] Guo B.-Y. and Wang Z.-Q., Numerical integration based on Laguerre-Gauss interpolation, Comput. Methods Appl. Mech. Engrg., vol. 196, no. 37-40 (2007), pp. 37263741.
[14] Guo B.-Y., Wang Z.-Q., Tian H.-J. and Wang L.-L., Integration processes of ordinary differential equations based on Laguerre-Radau interpolations, Math. Comp., vol. 77, no. 261 (2008), pp. 181199.
[15] Guo B.-Y. and Yan J.-P., Legendre-Gauss collocation methods for initial value problems of second order ordinary differential equations, Appl. Numer. Math., vol. 59, no. 6 (2009), pp. 13861408.
[16] Guo B.-Y. and Zhang K.-J., On non-isotropic Jacobi pseudospectral method, J. Comput. Math., vol. 26, no. 4 (2008), pp. 511535.
[17] Ierley G., Spencer B. and Worthing R., Spectral methods in time for a class of parabolic partial differential equations, J. Comput. Phys., vol. 102, no. 1 (1992), pp. 8897.
[18] Kanyamee N. and Zhang Z.-M., Comparison of a spectral collocation method and symplectic methods for Hamiltonian systems, Int. J. Numer. Anal. Model., vol. 8, no. 1 (2011), pp. 86104.
[19] Ma H.-P., Chebyshev-Legendre spectral viscosity method for nonlinear conservation laws, SIAM J. Numer. Anal., vol. 35, no. 3 (1998), pp. 869892.
[20] De Maerschalck B. and Gerritsma M. I., The use of Chebyshev polynomials in the space-time least-squares spectral element method, Numer. Algorithms, vol. 38, (2005), pp. 173196.
[21] Shen J., Tang T. and Wang L.-L., Spectral Methods: Algorithms, Analysis and Applications, Springer Series in Computational Mathematics, Vol. 41, Springer-Verlag, Berlin, Heidelberg, 2011.
[22] Tal-Ezer H., Spectral methods in time for hyperbolic equations, SIAM J. Numer. Anal., vol. 23, no. 1 (1986), pp. 1126.
[23] Tal-Ezer H., Spectral methods in time for parabolic problems, SIAM J. Numer. Anal., vol. 26, no. 1 (1989), pp. 111.
[24] Tang J.-G. and Ma H.-P., Single and multi-interval Legendre τ-methods in time for parabolic equations, Adv. Comput. Math., vol. 17, no. 4 (2002), pp. 349367.
[25] Tang J.-G. and Ma H.-P., A Legendre spectral method in time for first-order hyperbolic equations, Appl. Numer. Math., vol. 57, no. 1 (2007), pp. 111.
[26] Wang Z.-Q. and Guo B.-Y., Legendre-Gauss-Radau collocation methods for solving initial value problems of first order ordinary differential equations, J. Sci. Comput., vol. 52, no. 1 (2012), pp. 226255.
[27] Wang Z.-Q. and Wang L.-L., A Legendre-Gauss collocation method for nonlinear delay differential equations, Discrete Contin. Dyn. Syst. Ser. B, vol. 13, no. 3 (2010), pp. 685708.
[28] Werner H. and Arndt H., Gewöhnliche Differentialgleichungen, Springer Verlag, Heidelberg, 1986.
[29] Wihler T. P., An a priori error analysis of the hp-version of the continuous Galerkin FEM for nonlinear initial value problems, J. Sci. Comput., vol. 25, no. 3 (2005), pp. 523549.
[30] Yang X. and Wang Z.-Q., A Chebyshev-Gauss spectral collocation method for ordinary differential equations, J. Comput. Math., vol. 33, no. 1 (2015), pp. 5985.
[31] Yi L.-J., Liang Z.-Q. and Wang Z.-Q., Legendre-Gauss-Lobatto spectral collocation method for nonlinear delay differential equations, Math. Methods Appl. Sci., vol. 36, no. 18 (2013), pp. 24762491.
[32] Yi L.-J. and Wang Z.-Q., Legendre-Gauss-type spectral collocation algorithms for nonlinear ordinary/partial differential equations, Int. J. Comput. Math., vol. 91, no. 7 (2014), pp. 14341460.
[33] Yi L.-J. and Wang Z.-Q., Legendre spectral collocation method for second-order nonlinear ordinary/partial differential equations, Discrete Contin. Dyn. Syst. Ser. B, vol. 19, no. 1 (2014), pp. 299322.
[34] Yi L.-J. and Wang Z.-Q., Legendre-Gauss spectral collocation method for second order nonlinear delay differential equations, Numer. Math. Theory Methods Appl., vol. 7, no. 2 (2014), pp. 149178.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Numerical Mathematics: Theory, Methods and Applications
  • ISSN: 1004-8979
  • EISSN: 2079-7338
  • URL: /core/journals/numerical-mathematics-theory-methods-and-applications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 50 *
Loading metrics...

Abstract views

Total abstract views: 315 *
Loading metrics...

* Views captured on Cambridge Core between 17th November 2016 - 19th January 2018. This data will be updated every 24 hours.