Skip to main content
×
×
Home

A New Quasi-Monte Carlo Technique Based on Nonnegative Least Squares and Approximate Fekete Points

  • Claudia Bittante (a1), Stefano De Marchi (a1) and Giacomo Elefante (a2)
Abstract
Abstract

The computation of integrals in higher dimensions and on general domains, when no explicit cubature rules are known, can be ”easily” addressed by means of the quasi-Monte Carlo method. The method, simple in its formulation, becomes computationally inefficient when the space dimension is growing and the integration domain is particularly complex. In this paper we present two new approaches to the quasi-Monte Carlo method for cubature based on nonnegative least squares and approximate Fekete points. The main idea is to use less points and especially good points for solving the system of the moments. Good points are here intended as points with good interpolation properties, due to the strict connection between interpolation and cubature. Numerical experiments show that, in average, just a tenth of the points should be used mantaining the same approximation order of the quasi-Monte Carlo method. The method has been satisfactory applied to 2 and 3-dimensional problems on quite complex domains.

Copyright
Corresponding author
*Corresponding author. Email addresses: cbittant@math.unipd.it (C. Bittante), demarchi@math.unipd.it (S. De Marchi), giacomo.elefante@unifr.ch (G. Elefante)
References
Hide All
[1] Bittante C., Una nuova tecnica di cubatura quasi-Monte Carlo su domini 2D e 3D, (in Italian), Master's thesis, University of Padua, March 2014.
[2] Briani M., Sommariva A., Vianello M., Computing Fekete and Lebesgue points: simplex, square, disk, J. Comput. Appl. Math. 236 (2012), no. 9, 24772486.
[3] Bos L., Calvi J.-P., Levenberg N., Sommariva A. and Vianello M., Geometric weakly admissible meshes, discrete least squares approximation and approximate Fekete points, Math. Comp. 80(275) (2011), 16231638.
[4] Bos L., De Marchi S., Sommariva A. and Vianello M., Computing multivariate Fekete and Leja points by numerical linear algebra, SIAM J. Num. Anal. Vol. 48(5) (2010), 19841999.
[5] Bos L., De Marchi S., Sommariva A. and Vianello M., Weakly Admissible Meshes and Discrete Extremal Sets, Numer. Math. Theor. Meth. Appl. Vol. 4(1) (2011), 112.
[6] Bojanov B. and Petrova G., Numerical integration over a disc. A new Gaussian quadrature formula, Numer. Math. 80 (1998), 3959.
[7] Bos L. and Vianello M., Low cardinality admissible meshes on quadrangles, triangles and disks, Math. Inequal. Appl. 15 (2012), 229235.
[8] Caflisch R. E., Monte Carlo and quasi-Monte Carlo methods, Acta Numerica vol. 7, Cambridge University Press (1998), 149.
[9] Caliari M., De Marchi S. and Vianello M., Bivariate polynomial interpolation on the square at new nodal sets, Appl. Math. Comput. 165(2) (2005), 261274
[10] Calvi J. P. and Levenberg N., Uniform approximation by discrete least squares polynomials, J. Approx. Theory 152 (2008), 82100.
[11] Civril A. and Magdon-Ismail M., On selecting a maximum volume sub-matrix of a matrix and related problems, Theoretical Computer Science 410 (2009), 48014811.
[12] Da Fies G. and Vianello M., Agebraic cubature on planar lenses and bubbles, Dolomites Res. Notes Approx. 5 (2012), 712.
[13] De Marchi S., Marchiori M. and Sommariva A., Polynomial approximation and cubature at approximate Fekete and Leja points of the cylinder, Appl. Math. Comput. Vol. 218(21) (2012), 1061710629.
[14] De Marchi S. and Vianello M., Polynomial approximation on pyramids, cones and solids of rotation, Dolomites Res. Notes Approx, Proceedings DWCAA12, Vol. 6 (2013), 2026.
[15] Dick J. and Pillichshammer F., Digital Nets and Sequences. Discrepancy Theory and Quasi-Monte Carlo Integration, Cambridge University Press, Cambridge, 2010.
[16] Drmota M. and Tichy R. F., Sequences, discrepancies and applications, Lecture Notes in Math., 1651, Springer, Berlin, 1997.
[17] Klenke A., Probability Theory: A Comprehensive Course., Springer-Verlag London, 2014.
[18] Kroó A., On optimal polynomial meshes, J. Approx. Theory 163 (2011), 11071124.
[19] Lawson C. L. and Hanson R. J., Solving Least Squares Problems, Prentice-0Hall 1974, p. 161.
[20] Lemieux C., Monte Carlo and Quasi-Monte Carlo Sampling, Springer 2009.
[21] Morrow C. R. and Patterson T. N. L., Construction of algebraic cubatures rules using polynomial ideal theory, SIAM J. Numer. Anal. 15 (1978), 953976.
[22] Morokoff W. J. and Caflisch R. E., Quasi-random sequences and their discrepancies, SIAM J. Sci. Comput. 15 (1994), no. 6, 12511279.
[23] Niederreiter H., Random Number Generation and Quasi-Monte Carlo Methods., SIAM, 1992.
[24] Niederreiter H. G., Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Amer. Math. Soc. 84 (1978), no. 6, 9571041.
[25] Owen A. B., Multidimensional variation for quasi-Monte Carlo, http://finmath.stanford.edu/~owen/reports/ktfang.pdf.
[26] Piazzon F., Vianello M., Analytic transformations of admissible meshes, East J. Approx. 16 (2010), 389398.
[27] Sommariva A., Vianello M., Product Gauss cubature over polygons based on Green's integration formula, BIT Num. Mathematics 47 (2007), 441453.
[28] Sommariva A., Vianello M., Approximate Fekete points for weighted polynomial interpolation, Electron. Trans. Numer. Anal. 37 (2010), 122.
[29] Sommariva A., Vianello M., Compression of multivariate discrete measures and applications, Numer. Funct. Anal. Optim. 36 (2015), 11981223.
[30] Santin G., Sommariva A., Vianello M., An algebraic cubature formula on curvilinear polygons. Appl. Math. Comput. 217 (2011), 1000310015.
[31] Sommariva A., Vianello M., ChebfunGauss: Matlab code for Gauss-Green cubature by the Chebfun package, available at http://www.math.unipd.it/~marcov/CAAsoft.html
[32] Sommariva A. and Vianello M., Gauss-Green cubature and moment computation over arbitrary geometries, J. Comput. Appl. Math. 231 (2009), 886896.
[33] Strauch O. and Porubský Š., Distribution of Sequences: A Sampler, Peter Lang Publishing House, Frankfurt am Main 2005.
[34] Tuffin B., Radomization of quasi-Monte Carlo methods for error estimation: survey and normal approximation, Monte Carlo Methods and Applications, 10(3-4) (2008), 617628.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Numerical Mathematics: Theory, Methods and Applications
  • ISSN: 1004-8979
  • EISSN: 2079-7338
  • URL: /core/journals/numerical-mathematics-theory-methods-and-applications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 44 *
Loading metrics...

Abstract views

Total abstract views: 206 *
Loading metrics...

* Views captured on Cambridge Core between 17th November 2016 - 19th January 2018. This data will be updated every 24 hours.