Skip to main content

Nonconforming Finite Element Methods for Wave Propagation in Metamaterials

  • Changhui Yao (a1) and Lixiu Wang (a2)

In this paper, nonconforming mixed finite element method is proposed to simulate the wave propagation in metamaterials. The error estimate of the semi-discrete scheme is given by convergence order O(h 2), which is less than 40 percent of the computational costs comparing with the same effect by using Nédélec-Raviart element. A Crank-Nicolson full discrete scheme is also presented with O(τ 2 + h 2) by traditional discrete formula without using penalty method. Numerical examples of 2D TE, TM cases and a famous re-focusing phenomena are shown to verify our theories.

Corresponding author
*Corresponding author. Email addresses: (C.-H. Yao), (L.-X. Wang)
Hide All
[1] Hesthaven J. S., Warburton T., Nodal Discontinious Galerkin Methods:Algorithm, Analysis and Applications, Springer-verlag, Berlin Heidelbert, 2008.
[2] Li J., Huang Y., Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterilas, Springer-Verlag, Berlin Heidelbert, 2013.
[3] Monk P., Finite Element Methods for Maxwell's Equations, Oxford University Press, New York, 2003.
[4] Monk P., A mixed method for approximating Maxwell's equations, SIAM J. Numer. Anal., 28:6(1991), pp, 16101634.
[5] Monk P., Analysis of a finite element method for Maxwell's equations, SIAM J. Numer. Anal., 29:3(1992), pp, 714729.
[6] Monk P., A comparison of three mixed methods for the time-dependent Maxwell's equations, SIAM J. Sci. Statist. Comput., 13:5(1992), pp, 10971122.
[7] Duan H. Y., Jia F., Lin P. and Roger Tan C. E., The Local L2 Projected C0 Finite Element Method for Maxwell Problem, SIAM J. Numer. Anal., 47:2(2009), pp, 12741303.
[8] Jian Bo-Nan, Wu Jie and Povinelli L. A., The origin of spurious solutions in computational electromagnetics, NASA. Technical Memorandum 106921, (1995), pp, 144.
[9] Li J.C. and Chen Y., Analysis of a time-domain finite element method for 3-D Maxwell's equations in dispersive media, Comput. Methods Appl. Mech. Engrg., 195:33-36, (2006), pp, 42204229.
[10] Li J., Hesthaven J.S., Analysis and application of the nodal discontinuous Galerkin method for wave propagation in metamaterials, J. Comput. Phys., 258(2014), pp, 915930.
[11] Ziolkowski R.W., Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs, Opt. Express 11.(2003), pp, 662681.
[12] Lin Q. and Li J.C., uperconvergence analysis for Maxwell's equations in dispersive media, Math. Comp., 77:262, (2008), pp, 757771.
[13] Li J.C., Numerical convergence and physical fidelity analysis for Maxwell's equations in metamaterials, Comput. Methods Appl. Mech. Engrg., 198:37-40 (2009), pp. 31613172.
[14] Li J.C. and Zhang Z.M., Unified analysis of time domain mixed finite element methods for maxwell's equations in dispersive media, J. Sci. Comput., 28:5 (2010), pp. 693710.
[15] Li J.C., Unified analysis of leap-frog methods for solving time-domain Maxwell's equations in dispersive media, J. Sci. Comput., 47:1 (2011), pp. 126.
[16] Huang Y.Q., Li J.C. and Yang W., Interior penalty DG methods for Maxwell's equations in dispersive media, J. Comput. Phys., 230:12 (2011), pp. 45594570.
[17] Li J.C., Huang Y., Lin Y., Developing Finite Element Methods for Maxwell's Equations in a Cole-Cole Dispersive Medium, SIAM J. Sci. Comput., 33:6 (2011), pp. 31533174.
[18] Huang Y., Li J. and Yang W., Modeling Backward wave propagation in meta- materials by the finite element time domain method, SIAM J. Sci. Comput., 35:1(2013), pp, 248B274.
[19] Qiao Z., Yao C.H. and Jia S.J., Superconvergence and extrapolation analysis of a non-conforming mixed finite element approximation for time-harmonic Maxwell's equations, J. Sci. Comput., 46:1 (2011), pp 119.
[20] Qiao Z., Numerical investigations of the dynamical behaviors and instabilities for the Gierer-Meinhardt system, Comm. Comput. Phys., 3 (2008), pp. 406426.
[21] Qiao Z., Zhang Z. and Tang T., An adaptive time-stepping strategy for the molecular beam epitaxy models, SIAM J. Sci. Comput., 33 (2011), pp, 13951414.
[22] Shi D. Y. and Yao C. H., Nonconforming finite element approximation of time-dependeent Maxwell's equations in Debye medium, Numer. Methods PDEs., (2014). DOI:10.1002/num21843.
[23] Brenner S. C., Li F. and Sung L.-Y., A local divergence-free interior penalty method for two-dimensional curl-curl problem, SIAM J. Numer. Anal., 46:3 (2008), pp. 11901211.
[24] Brenner S. C., Cui J. Li F. and Sung L.-Y., A nonconforming finite element method for a two-dimensional curl-curl and grad-div problem, Numer. Math., 109 (2008), pp. 509533.
[25] Brenner S. C., Li F. and Sung L.-Y., A locally divergence-free nonconforming finite element method for the time-harmonic maxwell equations, Math. Comp., 76:258 (2007), pp. 573595.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Numerical Mathematics: Theory, Methods and Applications
  • ISSN: 1004-8979
  • EISSN: 2079-7338
  • URL: /core/journals/numerical-mathematics-theory-methods-and-applications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 45 *
Loading metrics...

Abstract views

Total abstract views: 154 *
Loading metrics...

* Views captured on Cambridge Core between 20th February 2017 - 20th November 2017. This data will be updated every 24 hours.