Skip to main content
    • Aa
    • Aa

Nonconforming Finite Element Methods for Wave Propagation in Metamaterials

  • Changhui Yao (a1) and Lixiu Wang (a2)

In this paper, nonconforming mixed finite element method is proposed to simulate the wave propagation in metamaterials. The error estimate of the semi-discrete scheme is given by convergence order O(h 2), which is less than 40 percent of the computational costs comparing with the same effect by using Nédélec-Raviart element. A Crank-Nicolson full discrete scheme is also presented with O(τ 2 + h 2) by traditional discrete formula without using penalty method. Numerical examples of 2D TE, TM cases and a famous re-focusing phenomena are shown to verify our theories.

Corresponding author
*Corresponding author. Email addresses: (C.-H. Yao), (L.-X. Wang)
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1] J. S. Hesthaven , T. Warburton , Nodal Discontinious Galerkin Methods:Algorithm, Analysis and Applications, Springer-verlag, Berlin Heidelbert, 2008.

[2] J. Li , Y. Huang , Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterilas, Springer-Verlag, Berlin Heidelbert, 2013.

[3] P. Monk , Finite Element Methods for Maxwell's Equations, Oxford University Press, New York, 2003.

[4] P. Monk , A mixed method for approximating Maxwell's equations, SIAM J. Numer. Anal., 28:6(1991), pp, 16101634.

[5] P. Monk , Analysis of a finite element method for Maxwell's equations, SIAM J. Numer. Anal., 29:3(1992), pp, 714729.

[6] P. Monk , A comparison of three mixed methods for the time-dependent Maxwell's equations, SIAM J. Sci. Statist. Comput., 13:5(1992), pp, 10971122.

[7] H. Y. Duan , F. Jia , P. Lin and C. E. Roger Tan , The Local L2 Projected C0 Finite Element Method for Maxwell Problem, SIAM J. Numer. Anal., 47:2(2009), pp, 12741303.

[9] J.C. Li and Y. Chen , Analysis of a time-domain finite element method for 3-D Maxwell's equations in dispersive media, Comput. Methods Appl. Mech. Engrg., 195:33-36, (2006), pp, 42204229.

[10] J. Li , J.S. Hesthaven , Analysis and application of the nodal discontinuous Galerkin method for wave propagation in metamaterials, J. Comput. Phys., 258(2014), pp, 915930.

[11] R.W. Ziolkowski , Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs, Opt. Express 11.(2003), pp, 662681.

[12] Q. Lin and J.C. Li , uperconvergence analysis for Maxwell's equations in dispersive media, Math. Comp., 77:262, (2008), pp, 757771.

[13] J.C. Li , Numerical convergence and physical fidelity analysis for Maxwell's equations in metamaterials, Comput. Methods Appl. Mech. Engrg., 198:37-40 (2009), pp. 31613172.

[15] J.C. Li , Unified analysis of leap-frog methods for solving time-domain Maxwell's equations in dispersive media, J. Sci. Comput., 47:1 (2011), pp. 126.

[16] Y.Q. Huang , J.C. Li and W. Yang , Interior penalty DG methods for Maxwell's equations in dispersive media, J. Comput. Phys., 230:12 (2011), pp. 45594570.

[17] J.C. Li , Y. Huang , Y. Lin , Developing Finite Element Methods for Maxwell's Equations in a Cole-Cole Dispersive Medium, SIAM J. Sci. Comput., 33:6 (2011), pp. 31533174.

[18] Y. Huang , J. Li and W. Yang , Modeling Backward wave propagation in meta- materials by the finite element time domain method, SIAM J. Sci. Comput., 35:1(2013), pp, 248B274.

[19] Z. Qiao , C.H. Yao and S.J. Jia , Superconvergence and extrapolation analysis of a non-conforming mixed finite element approximation for time-harmonic Maxwell's equations, J. Sci. Comput., 46:1 (2011), pp 119.

[21] Z. Qiao , Z. Zhang and T. Tang , An adaptive time-stepping strategy for the molecular beam epitaxy models, SIAM J. Sci. Comput., 33 (2011), pp, 13951414.

[23] S. C. Brenner , F. Li and L.-Y. Sung , A local divergence-free interior penalty method for two-dimensional curl-curl problem, SIAM J. Numer. Anal., 46:3 (2008), pp. 11901211.

[24] S. C. Brenner , J. Cui F. Li and L.-Y. Sung , A nonconforming finite element method for a two-dimensional curl-curl and grad-div problem, Numer. Math., 109 (2008), pp. 509533.

[25] S. C. Brenner , F. Li and L.-Y. Sung , A locally divergence-free nonconforming finite element method for the time-harmonic maxwell equations, Math. Comp., 76:258 (2007), pp. 573595.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Numerical Mathematics: Theory, Methods and Applications
  • ISSN: 1004-8979
  • EISSN: 2079-7338
  • URL: /core/journals/numerical-mathematics-theory-methods-and-applications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 31 *
Loading metrics...

Abstract views

Total abstract views: 114 *
Loading metrics...

* Views captured on Cambridge Core between 20th February 2017 - 28th July 2017. This data will be updated every 24 hours.