[1]
Hesthaven J. S., Warburton T., Nodal Discontinious Galerkin Methods:Algorithm, Analysis and Applications, Springer-verlag, Berlin Heidelbert, 2008.

[2]
Li J., Huang Y., Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterilas, Springer-Verlag, Berlin Heidelbert, 2013.

[3]
Monk P., Finite Element Methods for Maxwell's Equations, Oxford University Press, New York, 2003.

[4]
Monk P., A mixed method for approximating Maxwell's equations, SIAM J. Numer. Anal., 28:6(1991), pp, 1610–1634.

[5]
Monk P., Analysis of a finite element method for Maxwell's equations, SIAM J. Numer. Anal., 29:3(1992), pp, 714–729.

[6]
Monk P., A comparison of three mixed methods for the time-dependent Maxwell's equations, SIAM J. Sci. Statist. Comput., 13:5(1992), pp, 1097–1122.

[7]
Duan H. Y., Jia F., Lin P. and Roger Tan C. E., The Local L2 Projected C0 Finite Element Method for Maxwell Problem, SIAM J. Numer. Anal., 47:2(2009), pp, 1274–1303.

[8]
Jian Bo-Nan, Wu Jie and Povinelli L. A., The origin of spurious solutions in computational electromagnetics, NASA. Technical Memorandum 106921, (1995), pp, 1–44.

[9]
Li J.C. and Chen Y., Analysis of a time-domain finite element method for 3-D Maxwell's equations in dispersive media, Comput. Methods Appl. Mech. Engrg., 195:33-36, (2006), pp, 4220–4229.

[10]
Li J., Hesthaven J.S., Analysis and application of the nodal discontinuous Galerkin method for wave propagation in metamaterials, J. Comput. Phys., 258(2014), pp, 915–930.

[11]
Ziolkowski R.W., Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs, Opt. Express
11.(2003), pp, 662–681.

[12]
Lin Q. and Li J.C., uperconvergence analysis for Maxwell's equations in dispersive media, Math. Comp., 77:262, (2008), pp, 757–771.

[13]
Li J.C., Numerical convergence and physical fidelity analysis for Maxwell's equations in metamaterials, Comput. Methods Appl. Mech. Engrg., 198:37-40 (2009), pp. 3161–3172.

[14]
Li J.C. and Zhang Z.M., Unified analysis of time domain mixed finite element methods for maxwell's equations in dispersive media, J. Sci. Comput., 28:5 (2010), pp. 693–710.

[15]
Li J.C., Unified analysis of leap-frog methods for solving time-domain Maxwell's equations in dispersive media, J. Sci. Comput., 47:1 (2011), pp. 1–26.

[16]
Huang Y.Q., Li J.C. and Yang W., Interior penalty DG methods for Maxwell's equations in dispersive media, J. Comput. Phys., 230:12 (2011), pp. 4559–4570.

[17]
Li J.C., Huang Y., Lin Y., Developing Finite Element Methods for Maxwell's Equations in a Cole-Cole Dispersive Medium, SIAM J. Sci. Comput., 33:6 (2011), pp. 3153–3174.

[18]
Huang Y., Li J. and Yang W., Modeling Backward wave propagation in meta- materials by the finite element time domain method, SIAM J. Sci. Comput., 35:1(2013), pp, 248–B274.

[19]
Qiao Z., Yao C.H. and Jia S.J., Superconvergence and extrapolation analysis of a non-conforming mixed finite element approximation for time-harmonic Maxwell's equations, J. Sci. Comput., 46:1 (2011), pp 1–19.

[20]
Qiao Z., Numerical investigations of the dynamical behaviors and instabilities for the Gierer-Meinhardt system, Comm. Comput. Phys., 3 (2008), pp. 406–426.

[21]
Qiao Z., Zhang Z. and Tang T., An adaptive time-stepping strategy for the molecular beam epitaxy models, SIAM J. Sci. Comput., 33 (2011), pp, 1395–1414.

[22]
Shi D. Y. and Yao C. H., *Nonconforming finite element approximation of time-dependeent Maxwell's equations in Debye medium*, Numer. Methods PDEs., (2014). DOI:10.1002/num21843.

[23]
Brenner S. C., Li F. and Sung L.-Y., A local divergence-free interior penalty method for two-dimensional curl-curl problem, SIAM J. Numer. Anal., 46:3 (2008), pp. 1190–1211.

[24]
Brenner S. C., Cui J.
Li F. and Sung L.-Y., A nonconforming finite element method for a two-dimensional curl-curl and grad-div problem, Numer. Math., 109 (2008), pp. 509–533.

[25]
Brenner S. C., Li F. and Sung L.-Y., A locally divergence-free nonconforming finite element method for the time-harmonic maxwell equations, Math. Comp., 76:258 (2007), pp. 573–595.