Skip to main content
×
Home

Nonconforming Finite Element Methods for Wave Propagation in Metamaterials

  • Changhui Yao (a1) and Lixiu Wang (a2)
Abstract
Abstract

In this paper, nonconforming mixed finite element method is proposed to simulate the wave propagation in metamaterials. The error estimate of the semi-discrete scheme is given by convergence order O(h 2), which is less than 40 percent of the computational costs comparing with the same effect by using Nédélec-Raviart element. A Crank-Nicolson full discrete scheme is also presented with O(τ 2 + h 2) by traditional discrete formula without using penalty method. Numerical examples of 2D TE, TM cases and a famous re-focusing phenomena are shown to verify our theories.

Copyright
Corresponding author
*Corresponding author. Email addresses: chyao@lsec.cc.ac.cn (C.-H. Yao), lxwang@csrc.ac.cn (L.-X. Wang)
References
Hide All
[1] Hesthaven J. S., Warburton T., Nodal Discontinious Galerkin Methods:Algorithm, Analysis and Applications, Springer-verlag, Berlin Heidelbert, 2008.
[2] Li J., Huang Y., Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterilas, Springer-Verlag, Berlin Heidelbert, 2013.
[3] Monk P., Finite Element Methods for Maxwell's Equations, Oxford University Press, New York, 2003.
[4] Monk P., A mixed method for approximating Maxwell's equations, SIAM J. Numer. Anal., 28:6(1991), pp, 16101634.
[5] Monk P., Analysis of a finite element method for Maxwell's equations, SIAM J. Numer. Anal., 29:3(1992), pp, 714729.
[6] Monk P., A comparison of three mixed methods for the time-dependent Maxwell's equations, SIAM J. Sci. Statist. Comput., 13:5(1992), pp, 10971122.
[7] Duan H. Y., Jia F., Lin P. and Roger Tan C. E., The Local L2 Projected C0 Finite Element Method for Maxwell Problem, SIAM J. Numer. Anal., 47:2(2009), pp, 12741303.
[8] Jian Bo-Nan, Wu Jie and Povinelli L. A., The origin of spurious solutions in computational electromagnetics, NASA. Technical Memorandum 106921, (1995), pp, 144.
[9] Li J.C. and Chen Y., Analysis of a time-domain finite element method for 3-D Maxwell's equations in dispersive media, Comput. Methods Appl. Mech. Engrg., 195:33-36, (2006), pp, 42204229.
[10] Li J., Hesthaven J.S., Analysis and application of the nodal discontinuous Galerkin method for wave propagation in metamaterials, J. Comput. Phys., 258(2014), pp, 915930.
[11] Ziolkowski R.W., Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs, Opt. Express 11.(2003), pp, 662681.
[12] Lin Q. and Li J.C., uperconvergence analysis for Maxwell's equations in dispersive media, Math. Comp., 77:262, (2008), pp, 757771.
[13] Li J.C., Numerical convergence and physical fidelity analysis for Maxwell's equations in metamaterials, Comput. Methods Appl. Mech. Engrg., 198:37-40 (2009), pp. 31613172.
[14] Li J.C. and Zhang Z.M., Unified analysis of time domain mixed finite element methods for maxwell's equations in dispersive media, J. Sci. Comput., 28:5 (2010), pp. 693710.
[15] Li J.C., Unified analysis of leap-frog methods for solving time-domain Maxwell's equations in dispersive media, J. Sci. Comput., 47:1 (2011), pp. 126.
[16] Huang Y.Q., Li J.C. and Yang W., Interior penalty DG methods for Maxwell's equations in dispersive media, J. Comput. Phys., 230:12 (2011), pp. 45594570.
[17] Li J.C., Huang Y., Lin Y., Developing Finite Element Methods for Maxwell's Equations in a Cole-Cole Dispersive Medium, SIAM J. Sci. Comput., 33:6 (2011), pp. 31533174.
[18] Huang Y., Li J. and Yang W., Modeling Backward wave propagation in meta- materials by the finite element time domain method, SIAM J. Sci. Comput., 35:1(2013), pp, 248B274.
[19] Qiao Z., Yao C.H. and Jia S.J., Superconvergence and extrapolation analysis of a non-conforming mixed finite element approximation for time-harmonic Maxwell's equations, J. Sci. Comput., 46:1 (2011), pp 119.
[20] Qiao Z., Numerical investigations of the dynamical behaviors and instabilities for the Gierer-Meinhardt system, Comm. Comput. Phys., 3 (2008), pp. 406426.
[21] Qiao Z., Zhang Z. and Tang T., An adaptive time-stepping strategy for the molecular beam epitaxy models, SIAM J. Sci. Comput., 33 (2011), pp, 13951414.
[22] Shi D. Y. and Yao C. H., Nonconforming finite element approximation of time-dependeent Maxwell's equations in Debye medium, Numer. Methods PDEs., (2014). DOI:10.1002/num21843.
[23] Brenner S. C., Li F. and Sung L.-Y., A local divergence-free interior penalty method for two-dimensional curl-curl problem, SIAM J. Numer. Anal., 46:3 (2008), pp. 11901211.
[24] Brenner S. C., Cui J. Li F. and Sung L.-Y., A nonconforming finite element method for a two-dimensional curl-curl and grad-div problem, Numer. Math., 109 (2008), pp. 509533.
[25] Brenner S. C., Li F. and Sung L.-Y., A locally divergence-free nonconforming finite element method for the time-harmonic maxwell equations, Math. Comp., 76:258 (2007), pp. 573595.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Numerical Mathematics: Theory, Methods and Applications
  • ISSN: 1004-8979
  • EISSN: 2079-7338
  • URL: /core/journals/numerical-mathematics-theory-methods-and-applications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 45 *
Loading metrics...

Abstract views

Total abstract views: 154 *
Loading metrics...

* Views captured on Cambridge Core between 20th February 2017 - 20th November 2017. This data will be updated every 24 hours.