Skip to main content
    • Aa
    • Aa

Phaseless Imaging by Reverse Time Migration: Acoustic Waves

  • Zhiming Chen (a1) and Guanghui Huang (a2)

We propose a reliable direct imaging method based on the reverse time migration for finding extended obstacles with phaseless total field data. We prove that the imaging resolution of the method is essentially the same as the imaging results using the scattering data with full phase information when the measurement is far away from the obstacle. The imaginary part of the cross-correlation imaging functional always peaks on the boundary of the obstacle. Numerical experiments are included to illustrate the powerful imaging quality

Corresponding author
*Corresponding author. Email addresses: (Z.-M. Chen), (G.- H. Huang)
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[2] G. Bao , P. Li , and J. Lv , Numerical solution of an inverse diffraction grating problem from phaseless data, J. Opt. Soc. Am. A, 30 (2013), pp. 293299.

[3] N. Bleistein , J. Cohen , and J. Stockwell , Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion, Springer, 2001.

[4] J. Chen , Z. Chen , and G. Huang , Reverse time migration for extended obstacles: acoustic waves, Inverse Problems, 29 (2013), 085005 (17pp).

[5] J. Chen , Z. Chen , and G. Huang , Reverse time migration for extended obstacles: electromagnetic waves, Inverse Problems, 29 (2013), 085006 (17pp).

[7] Z. Chen and G. Huang , Reverse time migration for reconstructing extended obstacles in the half space, Inverse Problems, 31 (2015), 055007 (19pp).

[8] S. N. Chandler-Wilde , I. G. Graham , S. Langdon , and M. Lindner , Condition number estimates for combined potential boundary integral operators in acoustic scattering, J. Integral Equa. Appli., 21 (2009), pp. 229279.

[9] F. Cakoni , D. Colton , and P. Monk , The direct and inverse scattering problems for partially coated obstacles, Inverse Problems, 17 (2001), pp. 19972015.

[10] D. Colton and R. Kress , Inverse Acoustic and Electromagnetic Scattering Problems, Springer, 1998.

[11] A. J. Devaney , Structure determination from intensity measurements in scattering experiments, Physical Review Letters, 62 (1989), pp. 23852388.

[12] M. D’Urso , K. Belkebir , L. Crocco , T. Isernia , and A. Litman , Phaseless imaging with experimental data: facts and challenges, J. Opt. Soc. Am. A, 25 (2008), pp. 271281.

[13] G. Franceschini , M. Donelli , R. Azaro , A. and Massa , Inversion of phaseless total field data using a two-step strategy based on the iterative multiscaling approach, IEEE Trans. Geosci. Remote Sens., 44 (2006), pp. 35273539.

[16] O. Ivanyshyn and R. Kress , Identification of sound-soft 3D obstacles from phasless data, Inverse Problem and Imaing, 4 (2010), pp. 131149.

[17] O. Ivanyshyn and R. Kress , Inverse scattering for surface impedance from phase-less far field data, Journal of Computational Physics, 230 (2001), pp. 34433452.

[18] M. V. Klibanov , Phaseless inverse scattering problems in threes dimensions, SIAM J. Appl. Math., 74 (2014), pp. 392410.

[20] M. V. Klibanov and V. G. Romanov , Explicit formula for the solution of the phaseless inverse scattering problem of imaging of nano structures, Journal of Inverse and Ill-Posed Problems, (23) 2015, pp. 187193.

[22] R. Kress and W. Rundell , Inverse obstacle scattering with modulus of the far field pattern as data. H.W. Engl et al. (eds.), Inverse Problems in Medical Imaging and Nondestructive Testing, Springer, 1997

[23] R. Leis , Initial Boundary Value Problems in Mathematical Physics, B.G. Teubner, 1986

[25] A. Litman and K. Belkebir , Two-dimensional inverse profiling problem using phaseless data, J. Opt. Soc. Am. A, 23 (2006), pp. 27372746.

[27] R. B Melrose and E. T. Michael ,Near peak scattering and the corrected Kirchhoff approximation for a convex obstacle, Advances in Mathematics, 55 (1985), pp. 242315.

[28] P. Monk , Finite Element Methods for Maxwell's Equations, Clarendon Press, 2003.

[29] R. G. Novikov , Explicit formulas and global uniqueness for phaseless inverse scattering in multidimensions, The Journal of Geometric Analysis, (26) 2016, pp. 346359.

[30] R. G. Novikov , Formulas for phase recovering from phaseless scattering data at fixed frequency, Bulletin des Sciences Mathmétiques, (139) 2015, pp. 923936.

[31] F. Oberhettinger and L. Badii , Tables of Laplace Transforms, Springer-Verlag, 1973

[32] R. Potthast , Point-sources and Multipoles in Inverse Scattering Theory, Chapman and Hall/CRC, 2001.

[33] N. M. Temme , Special Functions : An Introduction to the Classical Functions of Mathematical Physics, Wiley, 1996.

[35] B. Zhang , On transmission problems for wave propagation in two locally perturbed half-spaces, Math. Proc. Camb. Phil. Soc., 115 (1994), pp. 545558.

[36] W. Zhang , L. Li , and F. Li , Inverse scattering from phaseless data in the free space, Science in China Series F: Information Sciences, 52 (2009), pp. 13891398.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Numerical Mathematics: Theory, Methods and Applications
  • ISSN: 1004-8979
  • EISSN: 2079-7338
  • URL: /core/journals/numerical-mathematics-theory-methods-and-applications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 35 *
Loading metrics...

Abstract views

Total abstract views: 144 *
Loading metrics...

* Views captured on Cambridge Core between 20th February 2017 - 19th August 2017. This data will be updated every 24 hours.