Skip to main content
×
Home

Phaseless Imaging by Reverse Time Migration: Acoustic Waves

  • Zhiming Chen (a1) and Guanghui Huang (a2)
Abstract
Abstract

We propose a reliable direct imaging method based on the reverse time migration for finding extended obstacles with phaseless total field data. We prove that the imaging resolution of the method is essentially the same as the imaging results using the scattering data with full phase information when the measurement is far away from the obstacle. The imaginary part of the cross-correlation imaging functional always peaks on the boundary of the obstacle. Numerical experiments are included to illustrate the powerful imaging quality

Copyright
Corresponding author
*Corresponding author. Email addresses: zmchen@lsec.cc.ac.cn (Z.-M. Chen), ghhuang@rice.edu (G.- H. Huang)
References
Hide All
[1] Ammari H., Chow Y. T., and Zou J., Phased and phaseless domain reconstruction in inverse scattering problem via scattering coefficients, arXiv: 1510.03999.
[2] Bao G., Li P., and Lv J., Numerical solution of an inverse diffraction grating problem from phaseless data, J. Opt. Soc. Am. A, 30 (2013), pp. 293299.
[3] Bleistein N., Cohen J., and Stockwell J., Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion, Springer, 2001.
[4] Chen J., Chen Z., and Huang G., Reverse time migration for extended obstacles: acoustic waves, Inverse Problems, 29 (2013), 085005 (17pp).
[5] Chen J., Chen Z., and Huang G., Reverse time migration for extended obstacles: electromagnetic waves, Inverse Problems, 29 (2013), 085006 (17pp).
[6] Chen Z. and Huang G., Reverse time migration for extended obstacles: elastic waves, Science in China Series A: Mathematics (in Chinese), 45 (2015), pp. 11031114.
[7] Chen Z. and Huang G., Reverse time migration for reconstructing extended obstacles in the half space, Inverse Problems, 31 (2015), 055007 (19pp).
[8] Chandler-Wilde S. N., Graham I. G., Langdon S., and Lindner M., Condition number estimates for combined potential boundary integral operators in acoustic scattering, J. Integral Equa. Appli., 21 (2009), pp. 229279.
[9] Cakoni F., Colton D., and Monk P., The direct and inverse scattering problems for partially coated obstacles, Inverse Problems, 17 (2001), pp. 19972015.
[10] Colton D. and Kress R., Inverse Acoustic and Electromagnetic Scattering Problems, Springer, 1998.
[11] Devaney A. J., Structure determination from intensity measurements in scattering experiments, Physical Review Letters, 62 (1989), pp. 23852388.
[12] D’Urso M., Belkebir K., Crocco L., Isernia T., and Litman A., Phaseless imaging with experimental data: facts and challenges, J. Opt. Soc. Am. A, 25 (2008), pp. 271281.
[13] Franceschini G., Donelli M., Azaro R., A. and Massa , Inversion of phaseless total field data using a two-step strategy based on the iterative multiscaling approach, IEEE Trans. Geosci. Remote Sens., 44 (2006), pp. 35273539.
[14] Grafakos L., Classical and Modern Fourier Analysis, Pearson, 2004.
[15] Hörmander L., The Analysis of Linear Partial Differential Operators, I, Springer, 1983.
[16] Ivanyshyn O. and Kress R., Identification of sound-soft 3D obstacles from phasless data, Inverse Problem and Imaing, 4 (2010), pp. 131149.
[17] Ivanyshyn O. and Kress R., Inverse scattering for surface impedance from phase-less far field data, Journal of Computational Physics, 230 (2001), pp. 34433452.
[18] Klibanov M. V., Phaseless inverse scattering problems in threes dimensions, SIAM J. Appl. Math., 74 (2014), pp. 392410.
[19] Klibanov M. V., Nguyen L. H., and Pan K., Nanostructures imaging via numerical solution of a 3-d inverse scattering problem without the phase information, arXiv: 1404.1183.
[20] Klibanov M. V. and Romanov V. G., Explicit formula for the solution of the phaseless inverse scattering problem of imaging of nano structures, Journal of Inverse and Ill-Posed Problems, (23) 2015, pp. 187193.
[21] Kress R., Integral equation methods in inverse acoustic and electromagnetic scattering In: Boundary Integral Formulations for Inverse Analysis (Ingham and Wrobel , eds) Computational Mechanics Publications Southampton, 1997, pp. 6792.
[22] Kress R. and Rundell W., Inverse obstacle scattering with modulus of the far field pattern as data. Engl H.W. et al. (eds.), Inverse Problems in Medical Imaging and Nondestructive Testing, Springer, 1997
[23] Leis R., Initial Boundary Value Problems in Mathematical Physics, B.G. Teubner, 1986
[24] Li L., Zheng H., and Li F., Two-diensional constant source inversion method with phaseless data: TM case, IEEE Trans. on Geoscience and remount sensing, 47 (2009), pp. 17191736.
[25] Litman A. and Belkebir K., Two-dimensional inverse profiling problem using phaseless data, J. Opt. Soc. Am. A, 23 (2006), pp. 27372746.
[26] McLean W., Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, 2000.
[27] Melrose R. B and Michael E. T.,Near peak scattering and the corrected Kirchhoff approximation for a convex obstacle, Advances in Mathematics, 55 (1985), pp. 242315.
[28] Monk P., Finite Element Methods for Maxwell's Equations, Clarendon Press, 2003.
[29] Novikov R. G., Explicit formulas and global uniqueness for phaseless inverse scattering in multidimensions, The Journal of Geometric Analysis, (26) 2016, pp. 346359.
[30] Novikov R. G., Formulas for phase recovering from phaseless scattering data at fixed frequency, Bulletin des Sciences Mathmétiques, (139) 2015, pp. 923936.
[31] Oberhettinger F. and Badii L., Tables of Laplace Transforms, Springer-Verlag, 1973
[32] Potthast R., Point-sources and Multipoles in Inverse Scattering Theory, Chapman and Hall/CRC, 2001.
[33] Temme N. M., Special Functions : An Introduction to the Classical Functions of Mathematical Physics, Wiley, 1996.
[34] Watson G. N., A Treatise on the Theory of Bessel Functions, Cambridge University Press, 1995.
[35] Zhang B., On transmission problems for wave propagation in two locally perturbed half-spaces, Math. Proc. Camb. Phil. Soc., 115 (1994), pp. 545558.
[36] Zhang W., Li L., and Li F., Inverse scattering from phaseless data in the free space, Science in China Series F: Information Sciences, 52 (2009), pp. 13891398.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Numerical Mathematics: Theory, Methods and Applications
  • ISSN: 1004-8979
  • EISSN: 2079-7338
  • URL: /core/journals/numerical-mathematics-theory-methods-and-applications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 41 *
Loading metrics...

Abstract views

Total abstract views: 174 *
Loading metrics...

* Views captured on Cambridge Core between 20th February 2017 - 20th November 2017. This data will be updated every 24 hours.