Skip to main content

Selected Recent Applications of Sparse Grids

  • Benjamin Peherstorfer (a1), Christoph Kowitz (a2), Dirk Pflüger (a3) and Hans-Joachim Bungartz (a1)

Sparse grids have become a versatile tool for a vast range of applications reaching from interpolation and numerical quadrature to data-driven problems and uncertainty quantification. We review four selected real-world applications of sparse grids: financial product pricing with the Black-Scholes model, interactive exploration of simulation data with sparse-grid-based surrogate models, analysis of simulation data through sparse grid data mining methods, and stability investigations of plasma turbulence simulations.

Corresponding author
*Email address: (B. Peherstorfer)
Hide All
[1] Achatz, S.. Adaptive finite Dünngitter-Elemente höherer Ordnung für elliptische partielle Differentialgleichungen mit variablen Koeffizienten. PhD thesis, Technische Universität München, 2003.
[2] Angioni, C., Peeters, A., Jenko, F., and Dannert, T.. Collisionality dependence of density peaking in quasilinear gyrokinetic calculations. Physics of Plasmas, 12(11), 2005.
[3] Balder, R.. Adaptive Verfahren für elliptische und paraboliche Differentialgleichungen auf dunnen Gittern. PhD thesis, Technische Universitat München, 1994.
[4] Benk, J. and Pflüger, D.. Hybrid parallel solutions of the Black-Scholes PDE with the truncated combination technique. In High Performance Computing and Simulation (HPCS), 2012 International Conference on, pages 678683, 2012.
[5] Bishop, C.M.. Pattern Recognition and Machine Learning. Springer, 2007.
[6] Bohn, B., Garcke, J., Iza-Teran, R., Paprotny, A., Peherstorfer, B., Schepsmeier, U., and Thole, C.-A.. Analysis of car crash simulation data with nonlinear machine learning methods. In Proceedings of the International Conference on Computational Science, ICCS 2013, 2013.
[7] Brizard, A. and Hahm, T.. Foundations of nonlinear gyrokinetic theory. Reviews of Modern Physics, 79(2):421468, 2007.
[8] Bungartz, H.-J.. Finite Elements of Higher Order on Sparse Grids. Habilitationsschrift, Technische Universität München, 1998.
[9] Bungartz, H.-J. and Griebel, M.. Sparse grids. Acta Numerica, 13:1–123, 2004.
[10] Bungartz, H.-J., Griebel, M., Röschke, D., and Zenger, C.. Pointwise convergence of the combination technique for Laplace’s equation. East-West J. Numer. Math, 2:2145, 1994.
[11] Bungartz, H.-J., Griebel, M., Röschke, D., and Zenger, C.. Two proofs of convergence for the combination technique for the efficient solution of sparse grid problems. In Keyes, D.E. and Xu, J., editors, Domain Decomposition Methods in Scientific and Engineering Computing, DDM7, Contemp. Math. 180, pages 1520. American Mathematical Society,1994.
[12] Bungartz, H.-J., Griebel, M., and Rüde, U.. Extrapolation, combination, and sparse grid techniques for elliptic boundary value problems. Comput. Methods Appl. Mech. Engrg, 116:243252, 1994.
[13] Bungartz, H.-J., Heinecke, A., Pflüger, D., and Schraufstetter, S.. Option pricing with a direct adaptive sparse grid approach. Journal of Computational and Applied Mathematics, 236(15):37413750, 2011.
[14] Bungartz, H.-J., Heinecke, A., Pflüger, D., and Schraufstetter, S.. Parallelizing a Black-Scholes solver based on finite elements and sparse grids. Concurrency and Computation: Practice and Experience, 2012.
[15] Butnaru, D.. Computational Steering with Reduced Complexity. PhD thesis, Technische Universität München, 2013.
[16] Butnaru, D., Buse, G., and Pflüger, D.. A parallel and distributed surrogate model implementation for computational steering. In Proceeding ofthe 11th International Symposium on Parallel and Distributed Computing … ISPDC 2012. IEEE, 2012.
[17] Butnaru, D., Peherstorfer, B., Pflüger, D., and Bungartz, H.-J.. Fast insight into high-dimensional parametrized simulation data. In 11th International Conference on Machine Learning and Applications (ICMLA). IEEE, 2012.
[18] Butnaru, D., Pflüger, D., and Bungartz, H.-J.. Towards high-dimensional computational steering of precomputed simulation data using sparse grids. In Proceedings ofthe International Conference on Computational Science (ICCS) 2011, volume 4 of Procedia CS, pages 5665. Tsukaba, Japan, Springer, 2011.
[19] Dijkema, T., Schwab, C., and Stevenson, R.. An adaptive wavelet method for solving high-dimensional elliptic PDEs. Constructive Approximation, 30(3):423455, 2009.
[20] Ester, M., Kriegel, H.-P., Sander, J., and Xu, X.. A density-based algorithm for discovering clusters in large spatial databases with noise. In 2nd International Conference on Knowledge Discoveryand Data Mining, 1996.
[21] Faber, G.. Über stetige Funktionen. MathematischeAnnalen, 66(1):8194, 1908.
[22] Fang, Y.. The combination approximation method. PhD thesis, Australian National University, 2012.
[23] Feuersänger, C.. Duünngitterverfahren für hochdimensionale elliptische partielle Differ-entialgleichungen. Diplomarbeit, Institut für Numerische Simulation, Universität Bonn, 2005.
[24] Feuersänger, C.. Sparse Grid Methods for Higher Dimensional Approximation. PhD thesis, Institut für Numerische Simulation, Universität Bonn, 2010.
[25] Garcke, J.. Berechnung von Eigenwerten der stationären Schrödingergleichung mit der Kombinationstechnik. Diplomarbeit, Institut für Angewandte Mathematik, Universität Bonn, 1998.
[26] Garcke, J.. Regression with the optimised combination technique. In Cohen, W. and Moore, A., editors, Proceedings of the 23rd ICML ’06, pages 321328. ACM Press, 2006.
[27] Garcke, J.. An optimised sparse grid combination technique for eigenproblems. PAMM, 7(1):10223011022302, 2007.
[28] Garcke, J.. A dimension adaptive sparse grid combination technique for machine learning. In Read, W., Larson, J.W., and Roberts, A.J., editors, Proceedings of the 13th Biennial Computational Techniques and Applications Conference, CTAC–2006, volume 48 of ANZIAM J., pages C725–C740, 2007.
[29] Garcke, J. and Griebel, M.. On the parallelization of the sparse grid approach for data mining. In Margenov, S., Wasniewski, J., and Yalamov, P., editors, Large-Scale Scientific Computations, Third International Conference, LSSC 2001, volume 2179 of Lecture Notes in Computer Science, pages 2232. Springer, 2001.
[30] Garcke, J., Griebel, M., and Thess, M.. Data mining with sparse grids. Computing, 67(3):225253, 2001.
[31] Giles, M.. Multilevel Monte Carlo path simulation. Operations Research, 56:607617, 2008.
[32] Glasserman, P.. Monte Carlo methods in financial engineering. Springer, 2004.
[33] Griebel, M. and Holtz, M.. Dimension-wise integration of high-dimensional functions with applications to finance. J. Complexity, 26:455489, 2010.
[34] Griebel, M. and Oswald, P.. On additive Schwarz preconditioners for sparse grid discretiz tions. Numerische Mathematik, 66(1):449463, 1993.
[35] Griebel, M., Schneider, M., and Zenger, C.. A combination technique for the solution of sparse grid problems. In de Groen, P. and Beauwens, R., editors, Iterative Methods in Linear Algebra, pages 263281. IMACS, Elsevier, North Holland, 1992.
[36] IIHarrar, D. and Osborne, M.. Computing eigenvalues of ordinary differential equations. ANZIAM Journal, 44(April):C313–C334, 2003.
[37] Hegland, M.. Adaptive sparse grids. In Burrage, K. and Sidje, R.B., editors, Proc. of 10th Computational Techniques and Applications Conference CTAC–2001, volume 44, pages C335–C353, 2003.
[38] Hegland, M., Garcke, J., and Challis, V.. The combination technique and some generalisations. Linear Algebra and its Applications, 420(2–3):249275, 2007.
[39] Hegland, M., Hooker, G., and Roberts, S.. Finite element thin plate splines in density estimation. ANZIAM Journal, 42:C712–C734, 2000.
[40] Heinecke, A. and Pflüger, D.. Emerging architectures enable to boost massively parallel data mining using adaptive sparse grids. International Journal ofParallel Programming, 41(3):357399, 2013.
[41] Heinecke, A., Schraufstetter, S., and Bungartz, H.-J.. A highly-parallel Black-Scholes solver based on adaptive sparse grids. International Journal ofComputer Mathematics, 89(9):12121238, 2012.
[42] Hernandez, V., Roman, J.E., and Vidal, V.. SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Software, 31(3):351362, 2005.
[43] Hinneburg, A. and Gabriel, H.-H.. Denclue 2.0: Fast clustering based on kernel density estimation. In Berthold, M., Shawe-Taylor, J., and Lavrac, N., editors, Advances in Intelligent Data Analysis VII, volume 4723 of Lecture Notes in Computer Science, pages 7080. Springer, 2007.
[44] Jenko, F., Told, D., Görler, T., Citrin, J., Navarro, A., Bourdelle, C., Brunner, S., Con-way, G., Dannert, T., Doerk, H., Hatch, D., Haverkort, J., Hobirk, J., Hogeweij, G., Mantica, P., Pueschel, M., Sauter, O., Villard, L., Wolfrum, E., and the ASDEX Upgrade Team. Global and local gyrokinetic simulations of high-performance discharges in view of ITER. Nuclear Fusion, 53(7):073003, 2013.
[45] Klimke, A.. Sparse Grid Interpolation Toolbox – user’s guide. Technical Report IANS report 2007/017, University of Stuttgart, 2007.
[46] Klimke, A. and Wohlmuth, B.. Algorithm 847: spinterp: Piecewise multilinear hierarchical sparse grid interpolation in MATLAB. ACM Transactions on Mathematical Software, 31(4), 2005.
[47] Kowitz, C. and Hegland, M.. The sparse grid combination technique for computing eigenvalues in linear gyrokinetics. In Alexandrov, V.N., Lees, M., Krzhizhanovskaya, V.V., Don-garra, J., and Sloot, P.M.A., editors, ICCS, volume 18 of Procedia Computer Science, pages 449458. Elsevier, 2013.
[48] Kowitz, C. and Hegland, M.. An opticom method for computing eigenpairs. In Garcke, J. and Pflüger, D., editors, Sparse Grids and Applications – Munich 2012, volume 97 of Lecture Notes in Computational Science and Engineering, pages 239253. Springer, 2014.
[49] Lederer, H., Tisma, R., and Hatzky, R.. Application enabling in deisa: Petascaling of plasma turbulence codes. Parallel Computing: Architectures, Algorithms and Applications, 2008.
[50] Mei, L. and Thole, C.-A.. Data analysis for parallel car-crash simulation results and model optimization. Sim. Modelling Practice and Theory, 16(3):329337, 2008.
[51] Merz, F., Kowitz, C., Romero, E., Roman, J., and Jenko, F.. Multi-dimensional gyrokinetic parameter studies based on eigenvalue computations. Computer Physics Communications, 183(4):922930, 2012.
[52] Osborne, M.R.. A new method for the solution of eigenvalue problems. The Computer Journal, 7(3):228232, 1964.
[53] Peherstorfer, B.. Model Order Reduction of Parametrized Systems with Sparse Grid Learning Techniques. PhD thesis, Technische Universität München, 2013.
[54] Peherstorfer, B., Pflüge, D., and Bungartz, H.. Density estimation with adaptive sparse grids for large data sets. In Proceedings ofthe 2014 SIAM International Conference on Data Mining, pages 443451. SIAM, 2014.
[55] Peherstorfer, B., Pflüger, D., and Bungartz, H.-J.. A sparse-grid-based out-of-sample extension for dimensionality reduction and clustering with Laplacian eigenmaps. In Wang, D. and Reynolds, M., editors, AI 2011: Advances in Artificial Intelligence, volume 7106 of Lecture Notes in Computer Science, pages 112121. Springer, 2011.
[56] Peherstorfer, B., Pflüger, D., and Bungartz, H.-J.. Clustering based on density estimation with sparse grids. In KI2012: Advances in Artificial Intelligence, volume 7526 of Lecture Notes in Computer Science. Springer, 2012.
[57] Peherstorfer, B., Zimmer, S., and Bungartz, H.-J.. Model reduction with the reduced basis method and sparse grids. In Garcke, J. and Griebel, M., editors, Sparse Grids and Applications, volume 88 of Lecture Notes in Computational Science and Engineering. Springer, 2013.
[58] Petersdorff, T. and Schwab, C.. Sparse finite element methods for operator equations with stochastic data. Applications of Mathematics, 51(2):145180, 2006.
[59] Pflaum, C.. Diskretisierung elliptischer Differentialgleichungen mit dünnen Gittern. PhD thesis, Technische Universität München, 1996.
[60] Pflaum, C. and Zhou, A.. Error analysis of the combination technique. Numerische Mathematik, 84(2):327350, 1999.
[61] Pflüger, D.. Spatially Adaptive Sparse Grids for High-Dimensional Problems. Hut, Verlag Dr., 2010.
[62] Pflüger, D.. Spatially adaptive refinement. In Garcke, J. and Griebel, M., editors, Sparse Grids and Applications, Lecture Notes in Computational Science and Engineering, pages 243262. Springer, 2012.
[63] Pflüger, D., Peherstorfer, B., and Bungartz, H.-J.. Spatially adaptive sparse grids for high-dimensional data-driven problems. Journal of Complexity, 26(5):508522, 2010.
[64] Rannacher, R.. Finite element solution of diffusion problems with irregular data. Nu-merische Mathematik, 43:309327, 1984.
[65] Reisinger, C. and Wittum, G.. Efficient hierarchical approximation of high-dimensional option pricing problems. SIAM Journal on Scientific Computing, 29(1):440458, 2007.
[66] Roman, J.E., Kammerer, M., Merz, F., and Jenko, F.. Fast eigenvalue calculations in a massively parallel plasma turbulence code. Parallel Computing, 36(5–6):339358, 2010.
[67] Stork, A., Thole, C.-A., Klimenko, S., Nikitin, I., Nikitina, L., and Astakhov, Y.. Towards interactive simulation in automotive design. The Visual Computer, 24(11):947953, 2008.
[68] Wesson, J.. Tokamaks. Oxford University Press, third edition, 2004.
[69] Yserentant, H.. On the multi-level splitting of finite element spaces. Numerische Mathematik, 49(4):379412, 1986.
[70] Zeiser, A.. Fast matrix-vector multiplication in the sparse-grid Galerkin method. Journal of Scientific Computing, 47(3):328346, 2011.
[71] Zenger, C.. Sparse grids. In Hackbusch, W., editor, Parallel Algorithms for Partial Differential Equations, volume 31 of Notes on Numerical Fluid Mechanics, pages 241251. Vieweg, 1991.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Numerical Mathematics: Theory, Methods and Applications
  • ISSN: 1004-8979
  • EISSN: 2079-7338
  • URL: /core/journals/numerical-mathematics-theory-methods-and-applications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed