Skip to main content
×
Home
    • Aa
    • Aa

Semi-Discrete and Fully Discrete Hybrid Stress Finite Element Methods for Elastodynamic Problems

  • Zhengqin Yu (a1) and Xiaoping Xie (a1)
Abstract
Abstract

This paper proposes and analyzes semi-discrete and fully discrete hybrid stress finite element methods for elastodynamic problems. A hybrid stress quadrilateral finite element approximation is used in the space directions. A second-order center difference is adopted in the time direction for the fully discrete scheme. Error estimates of the two schemes, as well as a stability result for the fully discrete scheme, are derived. Numerical experiments are done to verify the theoretical results.

Copyright
Corresponding author
*Corresponding author. Email addresses: zhengqinyulm@sina.com (Z. Yu), xpxie@scu.edu.cn (X. Xie)
References
Hide All
[1]Becache E., Joly P., Tsogka C., An analysis of new finite elements for the approximation of wave propagation problems, SIAM J. Numer. Anal. 2000, 37(4): 1503–1084.
[2]Becache E., Joly P., Tsogka C., A new family of mixed finite elements for the linear elastodynamic problem, SIAM J. Numer. Anal. 2002, 39(6): 21092132.
[3]Boulaajine L., Farhloul M., Paquet L., A priori error estimation for the dual mixed finite element method of the elastodynamic problem in a polygonal domain, I. J. Comput. Appl. Math. 2009, 231(1): 447472
[4]Boulaajine L., Farhloul M., Paquet L., A priori error estimation for the dual mixed finite element method of the elastodynamic problem in a polygonal domain, II. J. Comput. Appl. Math. 2011, 235(5): 12881310
[5]Brezzi F., Fortin M., Mixed and finite element method, Springer-Verlag, New York, 1991
[6]Cheng L.F., Xie X.P., The space-time noncomforming finite element analysis for the vibration model of plane elasticity, J. Sichuan University(Natural Science Edition, in Chinese). 2012, 49(2): 258266
[7]Clough R.W., Penzien T., Dynamics of structures, second ed., McGraw-Hill, Inc., New York, 1993
[8]Douglas J. Jr. and Gupta C.P., Superconvergence for a mixed finite element method fot elastic wave propagation in a plane domain, Numer. Math. 1986, 49(2-3): 189202
[9]Lai J.J., Huang J.G., Chen C.M., Vibration analysis of plane elasticity problems by the C°— continuous time stepping finite element method, Appl. Numer. Math. 2009, 59(5): 905919
[10]Pitkäranta J., Stenberg R., Error bounds for the approximation of the Stokes problem using bilinear/constant elements on irregular quadrilateral meshes, in The Mathematics of Finite Elements and Applications V, Whiteman J. R., ed., Academic Press, London, 1985: 325334.
[11]Pian T.H.H., Derivation of element stiffness matrices by assumed stress distributions, ALAA J. 1964, 2(5): 13331336
[12]Pian T.H.H., Sumihara K., Rational approach for assumed stress finite elements, Int. J. Numer. Methods Engrg. 1984, 20(9): 16851695
[13]Pian T.H.H., Tong P., Relations between incompatible displacement model and hybrid stress model, Int. J. Numer. Methods Engrg. 1986, 22(1): 173181
[14]Pian T.H.H., Wu C.C., A rational approach for choosing stress terms for hybrid finite element formulations, Int. J. Numer. Methods Engrg. 1988, 26(10): 23312343
[15]Thomee V., Galerkin finite element methods for parabolic problems, Springer, New York, 1997
[16]Xie X.P., An accurate hybrid macro-element with linear displacements, Commun. Numer. Methods Engrg. 2005, 21(1): 112
[17]Xie X.P., Zhou T.X., Optimization of stress modes by energy compatibility for 4-node hybrid quadrilaterals, Int. J. Numer. Methods Engrg. 2004, 59(2): 293313
[18]Xie X.P., Zhou T.X., Accurate 4-node quadrilateral elements with a new version of energy-compatible stress mode, Commun. Numer. Methods Engrg. 2008, 24(2): 125139
[19]Yu G.Z., Xie X.P., Carstensen C., Uniform convergence and a posteriori error estimation for assumed stress hybrid finite elment methods, Comput. Methods Appl. Mech. Engrg. 2011, 200(29-32): 24212433
[20]Zhang Z.M., Analysis of some quadrilateral nonconforming elements for incompressible elasiticity, SIAM J. Numer. Anal. 1997, 34(2): 640663
[21]Zienkiewicz O.C., Taylor R.L., The finite element method, vol.2, McGraw-Hill Book Company, London, 1989
[22]Zhou T.X., Nie Y.F., Combined hybrid approach to finite element schemes of high performance, Int. J. Numer. Methods Engrg. 2001, 51(2): 181202
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Numerical Mathematics: Theory, Methods and Applications
  • ISSN: 1004-8979
  • EISSN: 2079-7338
  • URL: /core/journals/numerical-mathematics-theory-methods-and-applications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 9 *
Loading metrics...

Abstract views

Total abstract views: 96 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th October 2017. This data will be updated every 24 hours.