[1]
Afonso, M. V., Bioucasdias, J. M. and Figueiredo, M. A., Fast image recovery using variable splitting and constrained optimization, IEEE T. Image Process. A, 19(9) (2010), pp. 2345–2356.

[2]
Afonso, M. V., Bioucasdias, J. M. and Figueiredo, M. A., An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems, IEEE T. Image Process., 20(3) (2011), pp. 681–695.

[3]
Cai, X., Han, D. and Yuan, X., On the convergence of the direct extension of ADMM for three-block separable convex minimization models with one strongly convex function, Comput. Optim. Appl., 66(1) (2017), pp. 39–73.

[4]
Candès, E. J., Romberg, J. and Tao, T., Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE T. Inform. Theory, 52(2) (2006), pp. 489–509.

[5]
Chen, C., He, B., Ye, Y. and Yuan, X., The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent, Math. Program., 155(1-2) (2016), pp. 57–79.

[6]
Chen, C., Li, M., Liu, X. and Ye, Y., On the Convergence of Multi-Block Alternating Direction Method of Multipliers and Block Coordinate Descent Method, Mathemtics, 2016.

[7]
Chen, C., Ng, M. K. and Zhao, X., Alternating direction method of multipliers for nonlinear image restoration problems, IEEE T. Image Process., 24(1) (2015), pp. 33–43.

[8]
Chen, H., Song, J. and Tai, X., A dual algorithm for minimization of the LLT model, Adv. Comput. Math., 31(1-3) (2009), pp. 115–130.

[9]
Chen, Y., Hager, W., Huang, F., Phan, D., Ye, X. and Yin, W., Fast algorithms for image reconstruction with application to partially parallel MR imaging, SIAM Journal on Imaging Sciences, 5(1) (2012), pp. 90–118.

[10]
Chen, Y., Ye, X. and Huang, F., A novel method and fast algorithm for MR image reconstruction with significantly under-sampled data, Inverse Probl. Imag., 4(2) (2010), pp. 223–240.

[11]
Compton, R., Osher, S. and Bouchard, L., Hybrid regularization for MRI reconstruction with static field inhomogeneity correction, IEEE International Symposium on Biomedical Imaging (ISBI), (2012), pp. 650–655.

[12]
Dai, Y., Han, D., Yuan, X. and Zhang, W., A sequential updating scheme of the Lagrange multiplier for separable convex programming, Math. Comput., 86(303) (2017), pp. 315–343.

[13]
Esser, E., Zhang, X. and Chan, T. F., A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science, SIAM Journal on Imaging Sciences, 3(4) (2010), pp. 1015–1046.

[14]
Gabay, D. and Mercier, B., A dual algorithm for the solution of nonlinear variational problems via finite element approximation, Comput. Math. Appl., 2(1) (1976), pp. 17–40.

[15]
Glowinski, R., Numerical Methods for Nonlinear Variational Problems, Springer, 1984.

[16]
Glowinski, R. and Marroco, A., Sur l'approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires, Revue française d’automatique, informatique, recherche opérationnelle. Analyse numérique, 9(2) (1975), pp. 41–76.

[17]
Han, D., He, H., Yang, H. and Yuan, X., A customized Douglas–Rachford splitting algorithm for separable convex minimization with linear constraints, Numer Math, 127(1) (2014), pp. 167–200.

[18]
Han, D. and Yuan, X., Local linear convergence of the alternating direction method of multipliers for quadratic programs, SIAM J. Numer. Anal, 51(6) (2013), pp. 3446–3457.

[19]
Han, D., Yuan, X. and Zhang, W., An augmented Lagrangian based parallel splitting method for separable convex minimization with applications to image processing, Math. Comput., 83(289) (2014), pp. 2263–2291.

[20]
He, B., Liao, L., Han, D. and Yang, H., A new inexact alternating directions method for monotone variational inequalities, Math. Program., 92(1) (2002), pp. 103–118.

[21]
He, B., Tao, M. and Yuan, X., Alternating direction method with Gaussian back substitution for separable convex programming, SIAM J. Optimiz, 22(2) (2012), pp. 313–340.

[22]
He, C., Hu, C., Li, X., Yang, X. and Zhang, W., A parallel alternating direction method with application to compound l1-regularized imaging inverse problems, Inform. Sciences, 348 (2016), pp. 179–197.

[23]
Lustig, M., Donoho, D. and Pauly, J. M., Sparse MRI: The application of compressed sensing for rapid MR imaging, Magn. Reson. Med., 58(6) (2007), pp. 1182–1195.

[24]
Lysaker, M., Lundervold, A. and Tai, X., Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time, IEEE T. Image Process., 12(12) (2003), pp. 1579–1590.

[25]
Ng, M. K., Weiss, P. and Yuan, X., Solving constrained total-variation image restoration and reconstruction problems via alternating directionmethods, SIAM J. Sci. Comput., 32(5) (2010), pp. 2710–2736.

[26]
Rudin, L. I., Osher, S. and Fatemi, E., Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60(1) (1992), pp. 259–268.

[27]
Wu, C. and Tai, X., Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models, SIAM Journal on Imaging Sciences, 3(3) (2010), pp. 300–339.

[28]
Wu, T., Variable splitting based method for image restoration with impulse plus Gaussian noise, Math. Probl. Eng., (2016), 3151303.

[29]
Xie, W., Yang, Y. and Zhou, B., An ADMM algorithm for second-order TV-based MR image reconstruction, Numer. Algorithms, 67(4) (2014), pp. 827–843.

[30]
Yang, J., Zhang, Y. and Yin, W., A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data, IEEE J. Sel. Top. Signa., 4(2) (2010), pp. 288–297.

[31]
Yang, W. and Han, D., Linear convergence of the alternating direction method of multipliers for a class of convex optimization problems, SIAM J. Numer. Anal., 54(2) (2016), pp. 625–640.

[32]
Ye, X., Chen, Y. and Huang, F., Computational acceleration for MR image reconstruction in partially parallel imaging, IEEE T. Med. Imaging, 30(5) (2011), pp. 1055–1063.

[33]
Zhang, J., Chen, R., Deng, C. and Wang, S., Fast Linearized Augmented Lagrangian Method for Euler's Elastica Model, Numer. Math. Theor. Meth. Appl., 10(1) (2017), pp. 98–115.

[34]
Zhang, J., Wei, Z. and Xiao, L., Bi-component decomposition based hybrid regularization method for partly-textured CS-MR image reconstruction, Signal Process., 128 (2016), pp. 274–290.

[35]
Zhi, Z., Sun, Y. and Pang, Z., Two-Stage Image Segmentation Scheme Based on Inexact Alternating Direction Method, Numer. Math. Theor. Meth. Appl., 9(3) (2016), pp. 451–469.

[36]
Zhu, Z., Cai, G. and Wen, Y., Adaptive Box-Constrained Total Variation Image Restoration Using Iterative Regularization Parameter Adjustment Method, Int. J. Pattern Recogn., 29(7) (2015), 1554003.