Skip to main content
×
Home
    • Aa
    • Aa

Spectral Method Approximation of Flow Optimal Control Problems with H 1-Norm State Constraint

  • Yanping Chen (a1) and Fenglin Huang (a2)
Abstract
Abstract

In this paper, we consider an optimal control problem governed by Stokes equations with H 1-norm state constraint. The control problem is approximated by spectral method, which provides very accurate approximation with a relatively small number of unknowns. Choosing appropriate basis functions leads to discrete system with sparse matrices. We first present the optimality conditions of the exact and the discrete optimal control systems, then derive both a priori and a posteriori error estimates. Finally, an illustrative numerical experiment indicates that the proposed method is competitive, and the estimator can indicate the errors very well.

Copyright
Corresponding author
*Corresponding author. Email addresses: yanpingchen@scnu.edu.cn (Y. P. Chen), hfl_937@sina.com (F. L. Huang)
References
Hide All
[1] Benedix O. and Vexler B., A posteriori error estimation and adaptivity for elliptic optimal control problems with state constraints, Comput. Optim. Appl., 44(1) (2009), pp. 325.
[2] Bergounioux M. and Kunisch K., On the structure of Lagrange multipliers for state-constrained optimal control problems, Syst. Control Lett., 48 (2003), pp. 169176.
[3] Bergounioux M. and Kunisch K., Augmented Lagrangian techniques for elliptic state constrained optimal control problems, SIAM J. Control Optim., 35 (1997), pp. 15241543.
[4] Bergounioux M. and Kunisch K., Primal-dual strategy for state-constrained optimal control problems, Comput. Optim. Appl., 22 (2002), pp. 193224.
[5] Barbu V. and Precupanu T., Convexity and Optimization in Banach Spaces, Springer, 2012.
[6] Casas E., Control of an elliptic problem with pointwise state constraints, SIAM J. Control Optim., 24(6) (1986), pp. 13091318.
[7] Casas E., Boundary control of semilinear elliptic equations with pointwise state constraints, SIAM J. Control Optim., 31(4) (1993), pp. 9931006.
[8] Canuto C., Hussaini M.Y., Quarteroni A., and Zang T.A., Spectral Methods in Fluid Dynamics, Springer-Verlag, New York, 1988.
[9] Canuto C., Hussaini M.Y., Quarteroni A., and Zang T.A., Spectral Methods: Fundamentals in Single Domains, Springer-Verlag, Berlin, 2006.
[10] Canuto C., Hussaini M.Y., Quarteroni A., and Zang T.A., Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics, Springer-Verlag, Berlin, 2007.
[11] Clarke F.H., Optimization and Nonsmooth Analysis, John Wiley Sons, Amsterdam, 1983.
[12] Cherednichenko S. and Rösch A., Error estimates for the discretization of elliptic control problems with pointwise control and state constraints, Comput. Optim. Appl., 44(1) (2009), pp. 2755.
[13] Chen Y., Yi N., and Liu W.B., A Legendre Galerkin spectral method for optimal control problems governed by elliptic equations, SIAM J. Numer. Anal., 46(5) (2008), pp. 22542275.
[14] De Los Reyes J.C. and Griesse R., State-constrained optimal control of the three-dimensionl stationary Navier-Stokes equations, J. Math. Anal. Appl., 343 (2008), pp. 257272.
[15] De Los Reyes J.C. and Kunisch K., A semi-smooth Newton method for regularized state-constrained optimal control of the Navier-Stokes equations, Comput., 78 (2006), pp. 287309.
[16] Gunzburger M.D. and Hou L.S., Finite-dimensional approximation of a class of constrained nonlinear optimal control problems, SIAM J. Control Optim., 34(3) (1996), pp. 10011043.
[17] Gong W. and Yan N.N., A mixed finite element scheme for optimal control problems with pointwise state constraints, J. Sci. Comput., 46 (2011), pp. 182203.
[18] Glowinski R., Lions J.L., and Trémolières R., Numerical analysis of variational inequalities, Amsterdam, North-Holland, 1981.
[19] Hoppe R.H.W. and Kieweg M., A posteriori error estimation of finite element approximations of pointwise state constrained distributed control problems, J. Numer. Math., 17(3) (2009), pp. 219244.
[20] Lions J. L., Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971.
[21] Liu W. B., Gong W. and Yan N., A new finite element approximation of a state-constrained optimal control problem, J. Comp. Math., 27(1) (2009), pp. 97114.
[22] Liu W. B., Yang D. P., Yuan L., and MA C. Q., Finite element approximations of an optimal control problem with integral state constraint, SIAM J. Numer. Anal., 48(3) (2010), pp. 11631185.
[23] Liu W. B. and Yan N., A posteriori error estimates for control problems governed by Stokes equations, SIAM J. Numer. Anal., 40(5) (2002), pp. 18501869.
[24] Liu W.B. and Yan N., Adaptive finite element methods for optimal control governed by PDEs, Science Press, Beijing, 2008.
[25] Meidner D., Rannacher R., and Vexler B., A priori error estimates for finite element discretizations of parabolic optimization problems with pointwise state constraints in time, SIAM J. Control Optim., 49(5) (2011), pp. 19611997.
[26] Niu H. F. and Yang D. P., Finite element analysis of optimal control problem governed by Stokes equations with L2-norm state-constriants, J. Comput. Math., 29(5) (2011), pp. 589604.
[27] Neittaanmaki P. and Tiba D., Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications, Marcel Dekker, New York, 1994
[28] Pironneau O., Optimal Shape Design for Elliptic Systems, Springer-Verlag, Berlin, 1984.
[29] Shen J., On fast direct poisson solver, inf-sup constant and iterative Stokes solver by Legendre-Galerkin method, J. Comput. Phys., 116(1) (1995), pp. 184188.
[30] Shen J. and Tang T., Spectral and High-Order Methods with Applications, Science Press, Beijing, 2006.
[31] Yuan L. and Yang D. P., A posteriori error estimate of optimal control problem of PDE with integral constraint for state, J. Comput. Math., 27(4) (2009), pp. 525542.
[32] Zhou J. W. and Yang D. P., Spectral mixed Galerkin method for state constrained optimal control problem governed by the first bi-harmonic equation, Int. J. Comput. Math., 88(14) (2011), pp. 29883011.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Numerical Mathematics: Theory, Methods and Applications
  • ISSN: 1004-8979
  • EISSN: 2079-7338
  • URL: /core/journals/numerical-mathematics-theory-methods-and-applications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 29 *
Loading metrics...

Abstract views

Total abstract views: 85 *
Loading metrics...

* Views captured on Cambridge Core between 20th June 2017 - 24th October 2017. This data will be updated every 24 hours.