[1]
Akkoul S., Ledee R., Leconge R., and Harba R., A new adaptive switching median filter, IEEE Signal Process. Lett, 17 (2010), pp. 587–590.

[2]
Astola J. and Kuosmanen P., Fundamentals of Nonlinear Digital Filtering, vol. 8, CRC, Boca Raton, FL, 1997.

[3]
Aubert G. and Aujol J., A variational approach to removing multiplicative noise, SIAM J. Appl. Math., 68 (2008), pp. 925–946.

[4]
Bar L., Kiryati N. and Sochen N., Image deblurring in the presence of impulsive noise, International Journal of Computer Vision, 70 (2006), pp. 279–298.

[5]
Bovik A., Handbook of Image and Video Processing, New York: Academic, 2010.

[6]
Brownrigg D., The weighted median filter, Comm. ACM, 27 (1984), pp. 807–818.

[7]
Cai J., Chan R., and Nikolova M., Fast two-phase image deblurring under impulse noise, J. Math. Imaging Vision, 36 (2010), pp. 46–53.

[8]
Cai J., Chan R., and Nikolova M., Two-phase approach for deblurring images corrupted by impulse plus Gaussian noise, Inverse Probl. Imaging, 2 (2008), pp. 187–204.

[9]
Chambolle A., An algorithm for total variation minimization and applications, J. Math. Imag. Vis., 20 (2004), pp. 89–97.

[10]
Chambolle A. and Pock T., A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imag. Vis., 40 (2011), pp. 120–145.

[11]
Chan R., Dong Y. and Hintermüller M., An efficient two-phase L^{1}- TV method for restoring blurred images with impulse noise, IEEE Trans. Image Process., 19 (2010), pp. 1731–1739.

[12]
Chan R., Ho C. and Nikolova M.. Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization, IEEE Trans. Image Process., 14 (2005), pp. 1479–1485.

[13]
Chan T. and Esedoglu S., Aspects of total variation regularized L^{1} function approximation, SIAM J. Appl. Math., 65 (2005), pp. 1817–1837.

[14]
Chan T. and Shen J., Image processing and analysis: variational, PDE, wavelet, and stochastic methods, SIAM, 2005.

[15]
Chen T. and Wu H., Space variant median filters for the restoration of impulse noise corrupted images, IEEE Trans. Circuits Syst. II, 48 (2001), pp. 784–789.

[16]
Chen T. and Wu H., Adaptive impulse detection using center-weighted median filters, IEEE Signal Process. Lett., 8 (2001), pp. 1–3.

[17]
Dong Y., Hintermüller M. and Neri M.
An efficient primal dual method for L^{1}- TV image restoration, SIAM J. Imag. Sci., 2 (2009), pp. 1168–1189.

[18]
Dong Y., Chan R., and Xu S., A detection statistic for random-valued impulse noise, IEEE Trans. Image Process., 16 (2007), pp. 1112–1120.

[19]
Dong Y. and Zeng T., A convex variational model for restoring blurred images with multiplicative noise, SIAM J. Imaging Sci., 6 (2013), pp. 1598–1625.

[20]
Elad M. and Aharon M., Image denoising via sparse and redundant representations over learned dictionaries, IEEE Trans. Image Process., 15 (2006), pp. 3736–3745.

[21]
Figueiredo B. and Bioucas-Dias J., Restoration of Poissonian images using alternating direction optimization, IEEE Trans. Image Process., 19 (2010), pp. 3133–3145.

[22]
Hintermüller M., Ito K. and Kunisch K., The primal-dual active set strategy as a semismooth Newton method, SIAM J. Opt., 13 (2002), pp. 865–888.

[23]
Huang Y., Lu D. and Zeng T., A Two-Step Approach for the Restoration of Images Corrupted by Multiplicative, SIAM J. Sci. Comput., 35 (2013), pp. A2856–A2873.

[24]
Hwang H. and Haddad R.
Adaptive median filters: new algorithms and results, IEEE Trans. Image Process., 4 (1995), pp. 499–502.

[25]
Ko S. and Lee Y., Center weighted median filters and their applications to image enhancement, IEEE Trans. Circuits Syst., 38 (1991), pp. 984–993.

[26]
Le T., Chartrand T., and Asaki T., A variational approach to reconstructing images corrupted by Poisson noise, J. Math. Imaging Vis., 27 (2007), pp. 257–263.

[27]
Li Y., Shen L., Dai D. and Suter B., Framelet algorithms for de-blurring images corrupted by impulse plus Gaussian noise, IEEE Trans. Image Process., 20 (2011), pp. 1822–1837.

[28]
Ma L., Yu J., and Zeng T., Sparse Representation Prior and Total Variation–Based Image Deblurring Under Impulse Noise, SIAM J. Imag Sci, 6 (2013), pp. 2258–2284.

[29]
Ma L., Ng M., Yu J., and Zeng T., Efficient box-constrained TV-type-l^{1} Algorithms for Restoring Images with Impulse Noise, J. Comp. Math., 31 (2013), pp. 249–270.

[30]
Nikolova M., Minimizers of cost-functions involving nonsmooth data-fidelity terms. Application to the processing of outliers, SIAM J. Numer. Anal., 40 (2002), pp. 965–994.

[31]
Nikolova M., A variational approach to remove outliers and impulse noise, J. Math. Imag. Vis., 20 (2004), pp. 99–120, .

[32]
Nocedal J. and Wright S., Numerical Optimization, New York: Springer, Second edition, 2006.

[33]
Qi L. and Sun J., A nonsmooth version of Newton's method, Math. Programm., 58 (1993), pp 353–367.

[34]
Pratt W., Median Filtering, Technical report, Image Processing Institute, University of Southern California, Los Angeles, CA, 1975.

[35]
Rudin L., Lions P., and Osher S., Multiplicative denoising and deblurring: theory and algorithms, Geometric Level Sets in Imaging, Vision and Graphics, Osher S. and Paragios N., Eds. New York: Springer, pp. 103–119, 2003.

[36]
Rudin L., Osher S., and Fatemi E., Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), pp. 259–268.

[37]
Setzer S. and Steidl G. and Teuber T., Deblurring Poissonian images by split Bregman techniques, J. Visual Commun. and Image Represent., 21 (2010), pp. 193–199.

[38]
Xiao Y., Zeng T., Yu J. and Ng M., Restoration of Images Corrupted by Mixed Gaussian-Impulse Noise via l_{1}-l_{0} Minimization, Pattern Recogn., 44 (2011), pp. 1708–1728.

[39]
Yang J., Zhang Y. and Yin W., An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise, SIAM J. Sci. Comput., 31 (2009), pp. 2842–2865.

[40]
Yin W., Goldfarb D. and Osher S., The total variation regularized L^{1} model for multiscale decomposition, Multiscale Model. Simul., 6 (2007), pp. 190–211.