Skip to main content
×
×
Home

Rebound from the Permian/Triassic mass extinction: evolutionary paleoecology of sequential early Triassic (Smithian to Spathian) marine paleocommunities

  • Jennifer K. Schubert (a1) and David J. Bottjer (a1)
Abstract

The Permian/Triassic mass extinction, the most devastating biotic crisis of the Phanerozoic, has aroused considerable scientific interest. However, because research has focused primarily on understanding the magnitude of diversity reduction and causal mechanisms, the nature and timing of biotic recovery in the Early Triassic are still poorly understood. Marine limestones in the Lower Triassic Moenkopi Formation, which disconformably overlies the Upper Permian of southeastern Nevada and southern Utah, provide a rare opportunity to study the aftermath of the mass extinction in shallow water carbonate environments.

Two contemporaneous members of the Moenkopi record the first marine incursion from the northwest in the Early Triassic (Smithian), the very sparsely fossiliferous marginal marine Schnabkaib Member in Nevada and southwest Utah, and the Sinbad Limestone in central-southern Utah, a marine unit dominated by amalgamated and condensed fossil-rich beds. The Virgin Limestone member was deposited during a subsequent (Spathian) Early Triassic sea level rise, about 4-5 Ma following the Permian/Triassic boundary, and includes nearshore and inner shelf limestones characterized by fossiliferous storm beds.

Because the fossiliferous limestones of the Smithian Sinbad and the Spathian Virgin were deposited in similar shallow subtidal settings, they provide an opportunity to compare and contrast the status of biotic rebound at different points along an Early Triassic “time transect.” Analysis of bulk samples reveals that the older Sinbad and younger Virgin are similar in each possessing 2-3 different benthic marine paleocommunities of low within-habitat species richness. There are, however, several important differences between the Sinbad and Virgin faunas. The richly fossiliferous Sinbad assemblages are primarily molluscan, composed of approximately 2-8 species of bivalves, which may or may not be accompanied by ammonoids and 0-11 species of gastropods. Small spines, possibly belonging to an echinoid, are numerous in some samples. Although bivalves are also abundant in Virgin Limestone assemblages, fossils of other higher taxa are well-represented, including abundant crinoid ossicles, common brachiopods, echinoid spines and plates, and rare ammonoids and gastropods. Sinbad faunas also appear to lack epibionts and borers, while they are present but not abundant in the Virgin.

The addition from Sinbad to Virgin times of groups other than molluscs, with different life habits and strategies, most likely led to an increase in spatial partitioning and resource utilization, in particular the development of epifaunal tiering with the appearance of stalked crinoids in the Virgin. This pattern of earliest Triassic community dominance by molluscs followed by later more “Paleozoic-like” communities has been observed in other regions. Earliest Triassic paucity of epibionts and borers indicates significant reduction in the biotic component of taphonomic processes, including taphonomic feedback, when compared with other time intervals. Data from these Early Triassic assemblages thus indicate the initiation of both an evolutionary and an ecological rebound between Sinbad (Smithian) and Virgin (Spathian) times.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Rebound from the Permian/Triassic mass extinction: evolutionary paleoecology of sequential early Triassic (Smithian to Spathian) marine paleocommunities
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Rebound from the Permian/Triassic mass extinction: evolutionary paleoecology of sequential early Triassic (Smithian to Spathian) marine paleocommunities
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Rebound from the Permian/Triassic mass extinction: evolutionary paleoecology of sequential early Triassic (Smithian to Spathian) marine paleocommunities
      Available formats
      ×
Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Paleontological Society Special Publications
  • ISSN: 2475-2622
  • EISSN: 2475-2681
  • URL: /core/journals/paleontological-society-special-publications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 6 *
Loading metrics...

Abstract views

Total abstract views: 9 *
Loading metrics...

* Views captured on Cambridge Core between 26th July 2017 - 18th August 2018. This data will be updated every 24 hours.