Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-20T21:31:09.874Z Has data issue: false hasContentIssue false

What can the Fossil Record Tell Us About the Terminal Cretaceous Extinction Event and the Disappearance of the Dinosaurs?

Published online by Cambridge University Press:  26 July 2017

William J. Zinsmeister*
Affiliation:
Department of Earth and Atmospheric Sciences Purdue University, West Lafayette, Indiana 47907
Get access

Extract

During the past decade, the scientific community, media and general public have witnessed one of most fascinating scientific debates of the century concerning the extinction at the end of the Cretaceous that resulted in the demise of the dinosaurs. It is doubtful that, if dinosaurs had not been among the principal characters, the Terminal Cretaceous Extinction Event (TCEE) would have received such close attention. The fact that so much attention has been given to dinosaur extinction when in fact, they played only a minor role in the TCEE, has shifted the focus away from more fundamental unresolved questions concerning this profound biotic event 65 mya (million years ago).

Type
Extinctions
Copyright
Copyright © 1994 Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez, L. W., Alvarez, W., Asaro, F. and Michel, H. V. 1980. Extraterrestrial cause of the Cretaceous/Tertiary extinction. Science, 208:10951108.Google Scholar
Courtillot, G., Feraud, H., Vandamme, D., Moreau, M. G., and Besse, J. 1988. The Deccan flood basalts and the Cretaceous/Tertiary boundary. Nature, 333:843846.Google Scholar
Crame, J. A. 1983. Cretaceous inoceramid bivalves from Antarctica. In Oliver, R. L., James, P. R., and Jago, J. B. (eds.) Antarctic Earth Science. Proceeding of the Fourth International Symposium on Antarctic Earth Sciences, Australian Academy of Science, Camberra, pp. 298302.Google Scholar
Dodson, P. and Tatarinov, L. P. 1990. Part III, Dinosaur Extinction. In Weishampel, D. B., Dodson, P. and Osmolska, H. (eds.), The Dinosauria, University of California Press, Berkeley, pp. 5562.Google Scholar
Doyle, P. and Zinsmeister, W. J. 1988. A new dimitobelidbelemnite from the Upper Cretaceous of Seymour Island, Antarctic Peninsula. In Feldmann, R. M. and Woodburne, M. O. (eds.), Geology and Paleontology of Seymour Island, Antarctic Peninsula, Geological Society of America Memoir., 169, pp. 285290.Google Scholar
Feldmann, R. M. 1990. On impacts and extinction: biological solutions to biologic problems. Journal of Paleontology, 64(1):151154.Google Scholar
Feldmann, R. M. and Woodburne, M. O., (eds.) 1988. Geology and Paleontology of Seymour Island, Antarctica Peninsula. Geological Society of America Memoir., 169, 557p.Google Scholar
Horner, J. R. 1988. Digging dinosaurs. Workman Publishing, New York, 210p.Google Scholar
Hsu, K. J. 1980. Terrestrial catastrophe caused by cometary impact at the end of the Cretaceous. Nature, 285:201293.CrossRefGoogle Scholar
Hsu, K. J. et al., 1982. Mass mortality and its environmental and evolutionary consequences. Science, 216:249256.Google Scholar
Hutt, P., Alvarez, W., Elder, W. E., Hansen, T., Kauffmann, E. G., Keller, G., Shoemaker, E. M., and Weissman, P. R. 1987. Comet showers as a cause of mass extinctions. Nature, 329:118126.Google Scholar
Kauffman, E. G. 1984. The fabric of Cretaceous extinctions. pp. 151246, In Berggren, W. A. and van Couvering, J. A. (eds.), Catastrophes and earth history, Princeton University Press, New Jersey.Google Scholar
Kauffman, E. G. 1988. The dynamics of marine stepwise extinction, In Lamola, M., Kauffman, E., Walliser, O., eds., Paleontology and Evolution, Extinction Events. Revigta. Espanola de Paoeontologia, p. 5771.Google Scholar
Lewis, J. S., Watkins, G. H., Hartman, H., and Prinn, R. G. 1982. Chemical consequences of major impact events on Earth. Geological Society of America, Special Paper 190, p. 215221.Google Scholar
Melosh, H. J., Schneider, N. M., Zahnle, K. J. and Latham, D. 1990. Ignition of global wildfires at the Cretaceous/Tertiary boundary. Nature, 343:251254.Google Scholar
Prinn, R. G. 1985. Impacts, acid rain, and biospheric traumas. Abstracts, EOS Transactions, 66:813.Google Scholar
Raup, D. M. and Sepkoski, J. J. 1984. Periodicity of extinctions in the geologic past. Proceeding of National Academy of Sciences, 81:109125.CrossRefGoogle ScholarPubMed
Raup, D. M. and Sepkoski, J. J. 1986. Periodic extinction of families and genera. Science, 231(4740):833836.Google Scholar
Simpson, G. G. 1944. Tempo and Mode in Evolution. Columbia University Press, New York, 237p.Google Scholar
Simpson, G. G. 1983. Fossils and the History of Life. Scientific American Library, New York, 239p.Google Scholar
Ward, P. D. 1991. The Cretaceous/Tertiary extinctions in the marine realm: a 1990 perspective. pp. 425432. In, Global Catastrophes in Earth History. Geological Society of America, Special Paper 247.Google Scholar
Wolbach, W. S., Lewis, J. R., and Anders, E. 1985. Cretaceous extinction: evidence for wildfires and search for meteoritc material. Science, 230:167.CrossRefGoogle Scholar
Zinsmeister, W. J., Feldmann, R. M., Woodburne, M. O., and Elliot, D. H. 1989. Latest Cretaceous/Tertiary transition on Seymour Island, Antarctica. Journal of Paleontology, 63(6):731738.Google Scholar