Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-01T01:14:53.526Z Has data issue: false hasContentIssue false

Development and psychometric evaluation of the Symptom Self-Management Behaviors Tool for adolescents/young adults with cancer

Published online by Cambridge University Press:  30 June 2023

Kristin Stegenga*
Affiliation:
Children’s Mercy Hospital, Division of Hematology/Oncology and BMT, Kansas City, MO, USA
Jeanne M. Erickson
Affiliation:
College of Nursing, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
Lauri Linder
Affiliation:
University of Utah College of Nursing and Primary Children’s Hospital, Center for Cancer and Blood Disorders, Salt Lake City, UT, USA
Catherine Fiona Macpherson
Affiliation:
Seattle Children’s Hospital, Center for Cancer and Blood Disorders, Seattle, WA, USA
R.K. Elswick Jr.
Affiliation:
School of Nursing, Virginia Commonwealth University, Richmond, VA, USA
Suzanne Ameringer
Affiliation:
School of Nursing, Virginia Commonwealth University, Richmond, VA, USA
*
Corresponding author: Kristin Stegenga; Email: kstegenga@cmh.edu

Abstract

Objectives

Adolescents and Young Adults (AYAs) with cancer experience symptoms related to disease and treatment. To manage these symptoms, they need to develop self-management behaviors, yet no tool exists to assess these behaviors. The Symptom Self-Management Behaviors Tool (SSMBT) was developed to meet this need.

Methods

The study consisted of 2 phases. Phase 1 evaluated content validity, and Phase 2 evaluated reliability and validity. The SSMBT initially contained 14 items with 2 dimensions: (1) behaviors used to Manage Symptoms and (2) behaviors used to communicate with providers regarding symptoms. Four oncology professionals and 5 AYAs with cancer assessed the content validity. Evaluation of reliability and validity involved 61 AYAs with cancer. Reliability was evaluated using Cronbach’s alpha. Construct validity was assessed with factor analysis. Discriminant validity was assessed using associations with symptom severity and distress.

Results

Content validity evaluation supported the importance of the items. Factor analysis supported a two-factor structure: Manage Symptoms (8 items) and Communicate with Healthcare Providers (4 items) subscales. Internal consistency reliability for the total SSMBT was acceptable with Cronbach’s alpha = 0.74. Cronbach’s alpha value for the Manage Symptoms subscale was α = 0.69 and for the Communicate with Healthcare Providers subscale was α = 0.78. The SSMBT total and the Manage Symptoms subscale scores were moderately correlated with symptom severity (r = 0.35, p = 0.014; r = 0.44, p = 0.002, respectively), partially supporting discriminant validity.

Significance of results

Systematic assessment of behaviors AYAs use is critical for clinical practice and evaluate interventions to improve self-management. The SSMBT demonstrates initial reliability and validity but requires further evaluation for clinical interpretation and future use.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bai, G, Korfage, IJ, Groen, EH, et al. (2016) Associations between nausea, vomiting, fatigue and health-related quality of life of women in early pregnancy: The Generation R Study. PLoS One 11, . doi:10.1371/journal.pone.0166133CrossRefGoogle ScholarPubMed
Berry, DL, Hong, F, Halpenny, B, et al. (2014) Electronic self-report assessment for cancer and self-care support: Results of a multicenter randomized trial. Journal of Clinical Oncology 32, 199205. doi:10.1200/Jco.2013.48.6662CrossRefGoogle ScholarPubMed
Chan, RJ, Yates, P and McCarthy, AL (2016) Fatigue self-management behaviors in patients with advanced cancer: A prospective longitudinal survey. Oncology Nursing Forum 43, 762771. doi:10.1188/16.ONF.762-771CrossRefGoogle Scholar
Coslov, N, Richardson, MK and Woods, NF (2021) Symptom experience during the late reproductive stage and the menopausal transition: Observations from the Women Living Better survey. Menopause 28, 10121025. doi:10.1097/GME.0000000000001805CrossRefGoogle ScholarPubMed
Crafoord, MT, Fjell, M, Sundberg, K, et al. (2020) Engagement in an interactive app for symptom self-management during treatment in patients with breast or prostate cancer: Mixed methods study. Journal of Medical Internet Research 22, . doi:10.2196/17058CrossRefGoogle ScholarPubMed
Erickson, JM, Ameringer, S, Linder, L, et al. (2019) Using a heuristic app to improve symptom self-management in adolescents and upimg adults with cancer. Journal of Adolescent Young Adult Oncology 8(2), 131141. doi:10.1089/jayao.2018.0103CrossRefGoogle ScholarPubMed
Ferris, J, Harward, D, Bickford, K, et al. (2012) A clinical tool to measure the components of health care transition. Renal Failure 34, 744753. doi:10.3109/0886022X.2012.678171CrossRefGoogle ScholarPubMed
Forrest, CB, Schuchard, J, Bruno, C, et al. (2022) Self-reported health outcomes of children and youth with 10 chronic diseases. The Journal of Pediatrics 246, . doi:10.1016/j.jpeds.2022.02.052CrossRefGoogle ScholarPubMed
Galán, S, De La Vega, R and Miró, J (2018) Needs of adolescents and young adults after cancer treatment: A systematic review. European Journal of Cancer Care 27, . doi:10.1111/ecc.12558CrossRefGoogle Scholar
Galassi, JP, Schanberg, R and Ware, WB (1992) The patient reactions assessment: A brief measure of the quality of the patient-provider medical relationship. Psychological Assessment 4, 346351. doi:10.1037/1040-3590.4.3.346CrossRefGoogle Scholar
Guadagnoli, E and Velicer, WF (1988) Relation of sample-size to the stability of component patterns. Psychological Bulletin 103, 265275. doi:10.1037/0033-2909.103.2.265CrossRefGoogle Scholar
Harris, PA, Taylor, R, Minor, BL, et al. Duda SN REDCap Consortium (2019) The REDCap consortium: Building an international community of software partners. Journal of Biomedical Informatics. doi:10.1016/j.jbi.2019.103208CrossRefGoogle ScholarPubMed
Heidrich, SM, Brown, RL, Egan, JJ, et al. (2009) An individualized representational intervention to improve symptom management (IRIS) in older breast cancer survivors: Three pilot studies. Oncology Nursing Forum 36, E133143. doi:10.1188/09.ONF.E133-E143CrossRefGoogle ScholarPubMed
Hibbard, JH, Mahoney, ER, Stockard, J, et al. (2005) Development and testing of a short form of the patient activation measure. Health Services Research 40(6 Pt 1), 19181930. doi:10.1111/j.1475-6773.2005.00438.xCrossRefGoogle Scholar
Hoffman, AJ (2013) Enhancing self-efficacy for optimized patient outcomes through the Theory of Symptom Self-Management. Cancer Nursing 36, E16E26. doi:10.1097/NCC.0b013e31824a730aCrossRefGoogle ScholarPubMed
Hoffman, AJ, Brintnall, RA, Brown, JK, et al. (2013) Too sick not to exercise: Using a 6-week, home-based exercise intervention for cancer-related fatigue self-management for postsurgical non-small cell lung cancer patients. Cancer Nursing 36, 175188. doi:10.1097/NCC.0b013e31826c7763CrossRefGoogle Scholar
Jensen, MP (2003) Questionnaire validation: A brief guide for readers of the research literature. Clinical Journal of Pain 19, 345352. doi:10.1097/00002508-200311000-00002CrossRefGoogle ScholarPubMed
Jibb, LA, Stevens, BJ, Nathan, PC, et al. (2017) Implementation and preliminary effectiveness of a real‐time pain management smartphone app for adolescents with cancer: A multicenter pilot clinical study. Pediatric Blood & Cancer 64, . doi:10.1002/pbc.26554CrossRefGoogle Scholar
JMP®FE0F (1989–2021) Version 16 0. Cary, NC: SAS Institute Inc.Google Scholar
Knoerl, R, Hong, F, Blonquist, T, et al. (2019) Impact of electronic self-assessment and self-care technology on adherence to clinician recommendations and self-management activity for cancer treatment–related symptoms: Secondary analysis of a randomized controlled trial. JMIR Cancer 5, . doi:10.2196/11395CrossRefGoogle ScholarPubMed
Lea, S, Martins, A, Fern, LA, et al. (2020) The support and information needs of adolescents and young adults with cancer when active treatment ends. BMC Cancer 20, 113. doi:10.1186/s12885-020-07197-2CrossRefGoogle Scholar
Linder, LA, Erickson, JM, Stegenga, K, et al. (2017) Symptom self-management strategies reported by adolescents and young adults with cancer receiving chemotherapy. Supportive Care in Cancer 25, 37933806. doi:10.1007/s00520-017-3811-8CrossRefGoogle Scholar
Linder, LA, Stegenga, K, Erickson, J, et al. (2019a) Priority symptoms, causes, and self-management strategies reported by AYAs with cancer. Journal of Pain and Symptom Management 58, 774783. doi:10.1016/j.jpainsymman.2019.07.008CrossRefGoogle ScholarPubMed
Linder, LA, Wu, YP, Macpherson, CF, et al. (2019b) Oral medication adherence among adolescents and young adults with cancer prior to and following use of a smartphone-based medication reminder app. Journal of Adolescent and Young Adult Oncology 8, 122130. doi:10.1089/jayao.2018.0072CrossRefGoogle Scholar
Maly, RC, Frank, JC, Marshall, GN, et al. (1998) Perceived efficacy in patient-physician interactions (PEPPI): Validation of an instrument in older persons. Journal of the American Geriatric Society 46, 889894. doi:10.1111/j.1532-5415.1998.tb02725.xCrossRefGoogle ScholarPubMed
Mooney, KH, Beck, SL, Wong, B, et al. (2017) Automated home monitoring and management of patient-reported symptoms during chemotherapy: Results of the symptom care at home RCT. Cancer Medicine 6, 537546. doi:10.1002/cam4.1002CrossRefGoogle ScholarPubMed
Nunnally, JC, Bernstein, IH (1994) Psychometric Theory, 3rd edn. McGraw Hill.Google Scholar
Polit, DF and Beck, CT (2006) The content validity index: Are you sure you know what’s being reported. Critique and recommendations. Research in Nursing & Health 29, 489497. doi:10.1002/nur.20147CrossRefGoogle ScholarPubMed
Portenoy, RK, Thaler, HT, Kornblith, AB, et al. (1994) The Memorial Symptom Assessment Scale: An instrument for the evaluation of symptom prevalence, characteristics and distress. European Journal of Cancer 30, 13261336. doi:10.1016/0959-8049(94)90182-1CrossRefGoogle Scholar
Ryan, P and Sawin, K (2009) The individual and family self-management theory: Background and perspectives on context, process, and outcomes. Nursing Outlook 57, . doi:10.1016/j.outlook.2008.10.004CrossRefGoogle ScholarPubMed
Sawin, Kathleen, Hellelfinger, Amy, Cashin, Susan and Brei, Timothy (2018) Development of the adolescent/young adult self-management and independence scale II: Psychometric data Journal of Pediatric Rehabilitation Medicine 11, 311322. doi: 10.3233/PRM-170479CrossRefGoogle ScholarPubMed
Sijtsma, K and Van Der Ark, LA (2015) Conceptions of reliability revisited and practical considerations. Nursing Research 64, 128136.CrossRefGoogle Scholar
Stinson, J, Gupt, A, Dupuis, F, et al. (2015) Usability testing of an online self-management program for adolescents with cancer. Journal of Pediatric Oncology Nursing 32, 7082. doi:10.1177/1043454214543021CrossRefGoogle ScholarPubMed