Hostname: page-component-68c7f8b79f-m4fzj Total loading time: 0 Render date: 2026-01-02T12:20:14.639Z Has data issue: false hasContentIssue false

“Natural” stress patterns and dependencies between edge alignment and quantity sensitivity

Published online by Cambridge University Press:  01 January 2026

Megan J. Crowhurst*
Affiliation:
Department of Linguistics, University of Texas, Austin, 305 E. 23rd Street STOP B5100, Austin, TX 78712 USA
Laura R. Faircloth*
Affiliation:
Department of Linguistics, University of Texas, Austin, 305 E. 23rd Street STOP B5100, Austin, TX 78712 USA
Allison L. Wetterlin*
Affiliation:
Institutt for fremmedspråk og oversetting, Agder University Kristiansand, Norway
Linda R. Wheeldon*
Affiliation:
Institutt for fremmedspråk og oversetting, Agder University Kristiansand, Norway

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We conducted an artificial language learning experiment to study learning asymmetries that might reveal latent preferences relating to, and any dependencies between, the edge aligmnent and quantity sensitivity (QS) parameters in stress patterning. We used a poverty of the stimulus approach to teach American English speakers an unbounded QS stress rule (stress a single CV: syllable) and either a left- or right-aligning QI rule if only light syllables were present. Forms with two CV: syllables were withheld in the learning phase and added in the test phase, forcing participants to choose between left- and right-aligning options for the QS rule. Participants learned the left- and right-edge QI rules equally well, and also the basic QS rule. Response patterns for words with two CV: syllables suggest biases favoring a left-aligning QS rule with a left-edge QI default. Our results also suggest that a left-aligning QS pattern with a right-edge QI default was least favored. We argue that stress patterns shown to be preferred based on evidence from ease-of-learning and participants’ untrained generalizations can be considered more natural than less favored opposing patterns. We suggest that cognitive biases revealed by artificial stress learning studies may have contributed to shaping stress typology.

Information

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
Published by the Linguistic Society of America with permission of the authors under a CC BY 3.0 license.
Copyright
Copyright © 2022 Megan J. Crowhurst et al.

Footnotes

*

The authors are grateful to Rajka Smiljanić for recording stimulus materials for the project, and to Scott Myers for his helpful input at various stages of the project. This research was presented at the Manchester Phonology Meeting in May, 2019. We also thank Andrew Nevins for his editorial handling of the submission and the anonymous PDA reviewers for their helpful feedback.

References

Archangeli, Diana & Pulleyblank, Douglas. 1994. Grounded phonology. Cambridge, MA: The MIT Press.Google Scholar
Bailey, Todd. 1995. Nonmetrical constraints on stress. Minneapolis: University of Minnesota Dissertation.Google Scholar
Bartolotti, James & Marian, Viorica. 2017. Bilinguals’ existing languages benefit vocabulary learning in a third language. Language Learning 67 (1). 110140. https://doi.org/10.1111/lang.12200.CrossRefGoogle Scholar
Beckman, Jill. 1997. Positional faithfulness, positional neutralisation and Shona vowel harmony. Phonology 14 (1). 146. http://www.jstor.org/stable/4420090.10.1017/S0952675797003308CrossRefGoogle Scholar
Boersma, Paul & Weenink, David. 2019. Praat: Doing phonetics by computer. Computer program (Version 5.3.13). http://www.praat.org/.Google Scholar
Bolton, Thaddeus. 1894. Rhythm. American Journal of Psychology 6. 145238. https://doi.org/10.2307/1410948.CrossRefGoogle Scholar
Bosson, James E. 1964. Modern Mongolian, a primer and reader (Uralic and Altaic Series, Vol. 38). Bloomington, IN: Indiana University.Google Scholar
Carpenter, Angela C. 2010. A naturalness bias in learning stress. Phonology 27 (3). 345392. https://doi.org/10.1017/S0952675710000199.CrossRefGoogle Scholar
Carpenter, Angela. 2016. The role of a domain-specific language mechanism in learning natural and unnatural stress. Open Linguistics 2. 105131. https://doi.org/10.1515/opli-2016-0006.CrossRefGoogle Scholar
Chomsky, Noam & Halle, Morris. 1968. The sound pattern of English. Cambridge, MA: The MIT Press.Google Scholar
Clements, George N. & Sezer, Engin. 1982. Vowel and consonant disharmony in Turkish. In van, Harry Hulst, der & Smith, Norval (eds.), The structure of phonological representations, 213255. Berlin: De Gruyter.Google Scholar
Crowhurst, Megan J. 1994. Foot extrametricality and template mapping in Cupeño. Natural Language & Linguistic Theory 12 (2). 177201. https://doi.org/10.1007/BF00993144.CrossRefGoogle Scholar
Crowhurst, Megan J. 2019. The iambic/trochaic law: Nature or nurture? Language and Linguistics Compass 14(1). el2360. https://doi.org/10.1111/lnc3.12360.Google Scholar
Culbertson, Jennifer. 2012. Typological universais as reflections of biased learning: Evidence from artificial language learning. Language and Linguistics Compass 6 (5). 310329. https://doi.org/10.1002/lnc3.338.CrossRefGoogle Scholar
Cutler, Anne & Carter, David M.. 1987. The predominance of strong initial syllables in the English vocabulary. Computer Speech and Language 2. 133142. https://doi.org/10.1016/0885-2308(87)90004-0.CrossRefGoogle Scholar
de Lacy, Paul. 2014. Evaluating evidence for stress systems. In van, Harry Hulst, der (ed.), Word stress: Theoretical and typological issues, 149193. Cambridge, UK: Cambridge University Press.10.1017/CBO9781139600408.008CrossRefGoogle Scholar
Diehl, Randy L. & Kluender, Keith R.. 1989. On the objects of speech perception. Ecological Psychology: 1(2). 121144.10.1207/s15326969eco0102_2CrossRefGoogle Scholar
Domahs, Ulrike, Plag, Ingo & Carroll, Rebecca. 2014. Word stress assignment in German, English and Dutch: Quantity-sensitivity and extrametricality revisited. Journal of Computational German Linguistics 17. 5996. https://doi.org/10.1007/sl0828-014-9063-9.CrossRefGoogle Scholar
Finley, Sara & Badecker, William. 2009. Artificial language learning and feature-based generalization. Journal of Memory and Language 61 (3). 423437. https://doi.org/10.1016/jjml.2009.05.002.CrossRefGoogle Scholar
Fletcher, Janet. 2013. The prosody of speech: Timing and rhythm. In William J. Hardcastle, John Laver & Fiona E. Gibbon (eds,), The handbook of phonetic sciences, 523602. Hoboken, NJ: Blackwell.Google Scholar
Gordon, Matthew K. 2000. Re-examining default-to-opposite stress. Proceedings of the Berkeley Linguistics Society (BLS) 26 (1). 101112. https://doi.org/10.3765/bls.v26il.1153.CrossRefGoogle Scholar
Gordon, Matthew K. 2002. A factorial typology of quantity-insensitive stress. Natural Language & Linguistic Theory 20 (3). 491552. http://www.jstor.org/stable/4048055.10.1023/A:1015810531699CrossRefGoogle Scholar
Gordon, Matthew K. 2016. Phonological typology (Oxford Survey in Phonology and Phonetics, Vol. 1). Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Halle, Morris & Vergnaud, Jean-Roger. 1987. An essay on stress. Cambridge, MA: The MIT Press.Google Scholar
Hammond, Michael. 1984. Constraining metrical theory: A modular theory of rhythm and destressing. Bloomington, IN: Indiana University Linguistics Club.Google Scholar
Hammond, Michael. 1999. The phonology of English: A prosodic Optimality-Theoretic approach. Oxford, UK: Oxford University Press.Google Scholar
Hayes, Bruce. 1985. A metrical theory of stress rules. New York: Garland Press.Google Scholar
Hayes, Bruce. 1982. Extrametricality and English stress. Linguistic Inquiry 13 (2). 227276. https://wwwjstor.org/stable/4178274.Google Scholar
Hayes, Bruce. 1995. Metrical stress theory: Principles and case studies. Chicago: University of Chicago Press.Google Scholar
Heinz, Jeffery. 2009. On the role of locality in learning stress patterns. Phonology 26 (2). 303351. https://doi.org/10.1017/S0952675709990145.CrossRefGoogle Scholar
Hill, Jane & Hill, Kenneth. 1968. Stress in the Cupan (Uto-Aztecan) languages. International Journal of American Linguistics 34 (4). 233241. https://doi.org/10.1086/465023.CrossRefGoogle Scholar
Hyman, Larry. 1977. On the nature of linguistic stress. In Hyman, Larry (ed.), Studies in stress and accent (Southern California Occasional Papers in Linguistics 4), 3782. Los Angeles: University of Southern California, Department of Linguistics.Google Scholar
Hyman, Larry. 1998. Positional prominence and the ‘prosodic trough’ in Yaka. Phonology 15 (1). 4175. https://www.jstor.org/stable/4420116.10.1017/S0952675798003522CrossRefGoogle Scholar
Kager, Rene W. J. 1989. A metrical theory of stress and destressing in English and Dutch. Utrecht: University of Utrecht dissertation.Google Scholar
Kager, Rene W. J. 2012. Stress in windows: Language typology and factorial typology. Lingua 122. 14541493. https://doi.0rg/101016/j.lingua.2012.06.005/.CrossRefGoogle Scholar
Kiparsky, Paul. 1973. “Elsewhere” in phonology. In Anderson, Stephen R. & Kiparsky, Paul (eds.), A Festschrift for Morris Halle, 93106. New York: Holt, Rinehart and Winston.Google Scholar
Mester, Ralf-Armin & Itô, Junko. 1989. Feature predictability and underspecification: Palatal prosody in Japanese mimetics. Language 68 (1). 258293. https://doi.org/10.1353/lan.1992.0040.CrossRefGoogle Scholar
Myers, Scott. 1990. Tone and the structure of words in Shona. New York: Garland Press.Google Scholar
Lenth, Russell. 2020. Package emmeans: Estimated marginal means, aka least-squares means. R package version 1.4.4. https://CRAN.R-project.org/package=emmeans.Google Scholar
Liberman, Mark & Prince, Alan S.. 1977. On stress and linguistic rhythm. Linguistic inquiry 8(2). 249336.Google Scholar
Lindblom, Bjorn. 2000. Developmental origins of adult phonology: The interplay between phonetic emergents and the evolutionary adaptations of sound patterns. Phonetica 57(2-4). 297314.10.1159/000028482CrossRefGoogle ScholarPubMed
Moreton, Elliott. 2008. Analytic bias and phonological typology. Phonology 25(1). 83127.10.1017/S0952675708001413CrossRefGoogle Scholar
Newlin-Łukowicz, Heather. 2012. Polish stress: Looking for phonetic evidence of a bidirectional system. Phonology 29 (2). 271329. https://doi.org/10.1017/S0952675712000139.CrossRefGoogle Scholar
Peperkamp, Sharon, Vendelin, Inga & Dupoux, Emmanuel. 2010. Perception of predictable stress: A cross-linguistic investigation. Journal of Phonetics 38 (3). 422430. https://doi.org/10.1016/j.wocn.2010.04.001.CrossRefGoogle Scholar
Poppe, Nicholas. 1970. Mongolian language handbook. Washington, DC: Center for Applied Linguistics.Google Scholar
Portin, Marja, Lehtonen, Minna, Harrer, Gabor, Wande, Erling, Niemi, Jussi & Laine, Matti. 2008. L1 effects on the processing of inflected nouns in L2. Acta Psychologica 128 (3). 452465. https://doi.org/10.1016/j.actpsy.2007.07.003.CrossRefGoogle ScholarPubMed
Prince, Alan S. 1983. Relating to the grid. Linguistic Inquiry 14 (1). 19100. http://www.jstor.org/stable/4178311s.Google Scholar
Prince, Alan S. & Smolensky, Paul. 2004. Optimality Theory: Constraint interaction in generative grammar. Hoboken, NJ: John Wiley & Sons.10.1002/9780470759400CrossRefGoogle Scholar
R Core Team. 2018. R: A language and environment for statistical computing. Software package, R foundation for Statistical Computing. https://www.R-project.org/.Google Scholar
Team, RStudio. 2016. RStudio: Integrated development for R. Software package, http://www.rstudio.com/.Google Scholar
Rasier, Laurent & Hiligsmann, Philippe. 2007. Prosodic transfer from L1 to L2. Theoretical and methodological issues. Nouveaux Cahiers de Linguistique Française 28. 4166.Google Scholar
Singmann, Henrik, Bolker, Ben, Westfall, Jake, Aust, Frederik & Ben-Shachar, Mattan. 2016. afex: Analysis of factorial experiments. Software package. https://CRAN.R-project.org/package=afex.Google Scholar
Spruit, Arie. 1986. Abkhaz studies. Leiden, NL: Leiden University dissertation.Google Scholar
Stanton, Juliet. 2016. Learnability shapes typology: The case of the midpoint pathology. Language 92 (4). 753791. https://doi.org/10.1353/lan.2016.0071.CrossRefGoogle Scholar
Staubs, Robert D. 2014. Computational modeling of learning biases in stress typology. Amherst, MA: University of Massachussetts dissertation.Google Scholar
Street, John C. 1962. Khalkha structure (Uralic and Altaic Series, Vol. 24). Bloomington, IN: Indiana University Press.Google Scholar
Sulpizio, Simone & McQueen, James M.. 2012. Italians use abstract knowledge about lexical stress during spoken-word recognition. Journal of Memory and Language 66 (1). 177193. https://doi.org/10.1016/j.jml.2011.08.001.CrossRefGoogle Scholar
Tabain, Marija, Fletcher, Janet & Butcher, Andrew. 2014. Lexical stress in Pitjantjatjara, Journal of Phonetics 42. 5266. https://doi.org/10.1016/j.wocn.2013.11.005.CrossRefGoogle Scholar
Tang, Kevin & Baer-Henney, Dinah. 2020. Modelling L1 and the artificial language during artificial language learning. PsyArXiv preprint, https://doi.org/10.31234/osf.io/df8ru.CrossRefGoogle Scholar
Vainio, Seppo, Pajunen, Anneli & Hyönä, Jukka. 2014. L1 and L2 word recognition in Finnish: Examining L1 effects on L2 processing of morphological complexity and morphophonological transparency. Studies in Second Language Acquisition 36 (1). 133162. https://doi.org/10.1017/S0272263113000478.CrossRefGoogle Scholar
van der Hulst, Harry & Goedemans, Rob. 2009. StressTyp: A database for word accentual patterns in the world's languages. In Everaert, Martin, Musgrave, Simon & Dimitriadis, Alexis (eds.), The use of databases in cross-linguistic studies, 235282. Berlin: De Gruyter. https://doi.org/10.1515/9783110198744.235.Google Scholar
Walker, Rachel. 1997. Mongolian stress, licensing and factorial typology. Manuscript. University of California, Santa Cruz.Google Scholar
Wilson, Colin. 2003. Experimental investigation of phonological naturalness. In Garding, Gina & Tsujimura, Mimu (eds.), Proceedings of the 22nd West Coast Conference on Formal Linguistics, 533546. Somerville, MA: Cascadilla Press.Google Scholar