Skip to main content

Characterization of West and Central African accessions from a pearl millet reference collection for agro-morphological traits and Striga resistance

  • F. T. Sattler (a1), M. D. Sanogo (a2), I. A. Kassari (a3), I. I. Angarawai (a4), K. W. Gwadi (a5), H. Dodo (a6) and B. I. G. Haussmann (a1)...

To promote the utilization of West and Central African (WCA) genetic resources of pearl millet [Pennisetum glaucum (L.) R. Br.], this study aimed at agro-morphological characterization of selected accessions from the pearl millet reference collection, established by the Generation Challenge Program and the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT). A total of 81 accessions were included, comprising 78 landraces originating from 13, predominantly WCA countries and three improved cultivars. All 81 accessions were evaluated together with 18 checks for resistance to the parasitic weed Striga hermonthica (Del.) Benth. in an artificially infested field at one location in Niger. Determined by available seed quantity, 74 accessions were characterized together with seven checks in the rainy season 2009 in field trials under low-input and fertilized conditions in Nigeria, Niger and Mali, respectively. Wide ranges were observed for various traits. Several accessions were identified as sources for specific traits of interest, i.e. long panicles, high-grain density, earliness, Striga resistance and stable yielding across environments. The observed yield inferiority of all Genebank accessions compared with checks may indicate lost adaptation or inbreeding depression due to an insufficient effective population size during multiplication. A principal component analysis revealed an immense diversity but also strong admixture among the tested accessions, i.e. there were no clearly distinct groups. The seed of all genotypes is available from ICRISAT. The online availability of the characterization data is expected to facilitate efficient use of these pearl millet accessions by breeding programmes in WCA and worldwide.

Corresponding author
*Corresponding author. E-mail:
Hide All
Annicchiarico, P (2002) Analysis of variance (ANOVA) and estimation of variance components. In: Annicchiarico, P (ed.) Genotype × Environment Interactions: Challenges and Opportunities for Plant Breeding and Cultivar Recommendations. FAO Plant Production and Protection Paper No. 174. Rome, Italy: Food and Agriculture Organization of the United Nations, pp. 2129.
Badu-Apraku, B (2010) Effects of recurrent selection for grain yield and Striga resistance in an extra-early maize population. Crop Science 50: 17351743.
Bashir, EMA, Ali, AM, Ali, AM, Melchinger, AE, Parzies, HK and Haussmann, BIG (2013) Characterization of Sudanese pearl millet germplasm for agro-morphological traits and grain nutritional values. Plant Genetic Resources 12: 113.
Bashir, EMA, Ali, AM, Ali, AM, Ismail, MI, Parzies, HK and Haussmann, BIG (2014a) Patterns of pearl millet genotype-by-environment interaction for yield performance and grain iron (Fe) and zinc (Zn) concentrations in Sudan. Field Crops Research 166: 8291.
Bashir, EMA, Ali, AM, Ali, AM, Mohamed, ETI, Melchinger, AE, Parzies, HK and Haussmann, BIG (2014b) Genetic diversity of Sudanese pearl millet (Pennisetum glaucum (L.) R. Br.) landraces as revealed by SSR markers, and relationship between genetic and agro-morphological diversity. Genetic Resources and Crop Evolution 62: 579591.
Beggi, F, Haussmann, BIG, Falalou, H, Gemenet, DC and Buerkert, A (2014) Early phosphorus efficiency of 102 pearl millet varieties from West Africa. In: Beggi, F (ed.) Effects of phosphorus and water stress on shoot and root growth and on mycorrhization of different pearl millet (Pennisetum glaucum (L.) R. Br.) varieties from West Africa. PhD thesis, University of Kassel, Witzenhaussen, Germany.
Bezançon, G, Pham, JL, Deu, M, Vigouroux, Y, Sagnard, F, Mariac, C, Kapran, I, Mamadou, A, Gérard, B, Ndjeunga, J and Chantereau, J (2009) Changes in the diversity and geographic distribution of cultivated millet (Pennisetum glaucum (L.) R. Br.) and sorghum (Sorghum bicolor (L.) Moench) varieties in Niger between 1976 and 2003. Genetic Resources and Crop Evolution 56: 223236.
Bhattacharjee, R, Khairwal, IS, Bramel, PJ and Reddy, KN (2007) Establishment of a pearl millet [Pennisetum glaucum (L.) R. Br.] core collection based on geographical distribution and quantitative traits. Euphytica 155: 3545.
Bidinger, FR, Mahalakshimi, V and Rao, GDP (1987) Assessment of drought resistance in pearl millet [Pennisetum americanum (L.) Leeke]. II Estimation of genotype response to stress. Australia Journal of Agricultural Research 38: 3748.
Bidinger, FR, Weltzien, E, Mahalakshmi, RV, Singh, SD and Rao, KP (1994) Evaluation of landrace topcross hybrids of pearl millet for arid zone environments. Euphytica 76: 215226.
Bidinger, FR, Raj, AGB, Abraha, N, Ali, AM, Obilana, AB and Jones, RB (2005) Topcross hybrids as an entry into commercial seed production of pearl millet in Eastern Africa. Experimental Agriculture 41: 335356.
Brown, AHD (1989) Core collections: a practical approach to genetic resources management. Genome 31: 818824.
Brunken, J, de Wet, JMJ and Harlan, JR (1977) The morphology and domestication of pearl millet. Economic Botany 31: 163174.
Burton, GW (1976) Gene loss in pearl millet germplasm pools. Crop Science 16: 251.
Butler, DG, Cullis, BR, Gilmour, AR and Gogel, BJ (2009) Analysis of mixed models for S language environments. ASReml-R Reference Manual. Brisbane, Queensland, Australia: The State of Queensland, Dep. of Primary Industries and Fisheries.
de Mendiburu, F (2016) Agricolae: Statistical Procedures for Agricultural Research. R package version 1. 2-4.
Gemenet, DC, Hash, CT, Sy, O, Zangre, RG, Sanogo, MD, Leiser, WL, Parzies, HK and Haussmann, BIG (2014) Pearl millet inbred and testcross performance under low phosphorus in West Africa. Crop Science 54: 25742585.
Gemenet, DC, Beggi, F, Hash, CT, Sy, O, Sanogo, MD, Zangre, RG, Falalou, H, Buerkert, A and Haussmann, BIG (2015a) Towards understanding the traits contributing to performance of pearl millet open-pollinated varieties in phosphorus-limited environments of West Africa. Plant and Soil 407: 243259.
Gemenet, DC, Hash, CT, Sanogo, MD, Sy, O, Zangre, RG, Leiser, WL and Haussmann, BIG (2015b) Phosphorus uptake and utilization efficiency in West African pearl millet inbred lines. Field Crops Research 171: 5466.
Gemenet, DC, Leiser, WL, Beggi, F, Herrmann, LH, Vadez, V, Rattunde, HFW, Weltzien, E, Hash, CT, Buerkert, A and Haussmann, BIG (2016) Overcoming phosphorus deficiency in West African pearl millet and sorghum production systems: promising options for crop improvement. Frontiers in Plant Science 7, 1389.
Genesys (2016). viewed 3 February 2017.
Hash, CT, Schaffert, RE and Peacock, JM (2002) Prospects for using conventional techniques and molecular biological tools to enhance performance of ‘orphan’ crop plants on soils low in available phosphorus. Plant Soil 245: 135146.
Haussmann, BIG, Boureima, SS, Kassari, IA, Moumouni, KH and Boubacar, A (2007) Mechanisms of adaptation to climate variability in West African pearl millet landraces – a preliminary assessment. SAT eJournal 3: 24.
Haussmann, BIG, Hess, DE, Welz, HG and Geiger, HH (2000) Improved methodologies for breeding striga-resistant sorghums. Field Crops Research 66: 195211.
Haussmann, BIG, Hess, DE, Reddy, BVS, Mukuru, SZ, Kayentao, M, Welz, HG and Geiger, GG (2001) Pattern analysis of genotype × environment interaction for striga resistance and grain yield in African sorghum trials. Euphytica 122: 297308.
Haussmann, BIG, Rattunde, HF, Weltzien-Rattunde, E, Traoré, PSC, vom Brocke, K and Parzies, HK (2012) Breeding strategies for adaptation of pearl millet and sorghum to climate variability and change in West Africa. Journal of Agronomy and Crop Science 198: 327339.
Hoekstra, FA, Crowe, LM and Crowe, JH (2006) Differential desiccation sensitivity of corn and Pennisetum pollen linked with their sucrose contents. Plant, Cell & Environment 12: 83091.
Kountche, BA, Hash, CT, Dodo, H, Laoualy, O, Sanogo, MD, Timbeli, A, Vigouroux, Y, This, D, Nijkamp, R and Haussmann, BIG (2013) Development of a pearl millet striga-resistant genepool: response to five cycles of recurrent selection under striga-infested field conditions in West Africa. Field Crops Research 154: 8290.
Lewis, LR (2010) Biogeography and genetic diversity of pearl millet (Pennisetum glaucum) from Sahelian Africa. The Professional Geographer 62: 377394.
Mahalakshmi, V, Bidinger, FR and Raju, DS (1987) Effect of timing of water deficit on pearl millet (Pennisetum americanum). Field Crops Research 15: 327339.
Manga, VK and Yadav, OP (1995) Effect of seed size on developmental traits and ability to tolerate drought in pearl millet. Journal of Arid Environments 29: 169172.
Melchinger, AE and Gumber, RK (1998) Overview of heterosis and heterotic groups in agronomic groups. In: Larnkey, KR and Staub, JE (eds) Concepts and Breeding Of Heterosis in Crop Plants. CSSA Spec. Publ. 25. Madison, WI: CSSA, pp. 2944.
Ouendeba, B, Ejeta, G, Nyquist, WE, Hanna, W and Kumar, A (1993) Heterosis and combining ability among African landraces. Crop Science 33: 735739.
Oumar, I, Mariac, C, Pham, JL and Vigouroux, Y (2008) Phylogeny and origin of pearl millet (Pennisetum glaucum [L.] R. Br) as revealed by microsatellite loci. Theoretical and Applied Genetics 117: 489497.
Padilla, JC (2007) Phenotypic characterization of a pearl millet [Pennisetum glaucum (L.) R. Br.] core collection under field conditions in Niger. MSc thesis, University of Hohenheim, Stuttgart, Germany.
Pattanashetti, SK, Dwivedi, SL, Vetriventhan, M and Reddy, KN (2016) Pearl millet. In: Singh, M and Upadhyaya, HD (eds) Genetic and Genomic Resources for Grain Cereals Improvement. San Diego, USA: Academic Press, pp. 253289.
Pistorius, R (1997) Scientists, Plants, and Politics: A History of the Plant Genetic Resources Movement. Rome, Italy: Bioversity International.
Pucher, A, Høgh-Jensen, H, Gondah, J, Hash, CT and Haussmann, BIG (2014) Micronutrient density and stability in West African pearl millet – potential for biofortification. Crop Science 54: 17091720.
Pucher, A, Sy, O, Angarawai, II, Gondah, J, Zangre, R, Ouedraogo, M, Sanogo, MD, Boureima, S, Hash, CT and Haussmann, BIG (2015) Agro-morphological characterization of West and Central African pearl millet accessions. Crop Science 55: 737.
Pucher, A, Sy, O, Sanogo, MD, Angarawai, II, Zangre, R, Ouedraogo, M, Boureima, S, Hash, CT and Haussmann, BIG (2016) Combining ability patterns among West African pearl millet landraces. Field Crops Research 195: 920.
R Development Core Team (2012) R: A Language and Environment for Statistical Computing. 2.14.2. Vienna, Austria: R Foundation for Statistical Computing., ISBN 3-900051-07-0.
Sandmeier, M (1993) Selfing rates of pearl millet (Pennisetum typhoides Stapf and Hubb.) under natural conditions. Theoretical and Applied Genetics 86: 513517.
Sinclair, TR and Vadez, V (2002) Physiological traits for crop yield improvement in low N and P environment. Plant Soil 245: 115.
Stich, B, Haussmann, BIG, Pasam, R, Bhosale, S, Hash, CT, Melchinger, AE and Parzies, HK (2010) Patterns of molecular and phenotypic diversity in pearl millet [Pennisetum glaucum (L.) R. Br.] from West and Central Africa and their relation to geographical and environmental parameters. BMC Plant Biology 10: 216.
Stram, DO and Lee, JW (1994) Variance components testing in the longitudinal mixed effects model. Biometrics 50: 11711177.
Tostain, S and Marchais, L (1993) Evaluation de la diversité génétique des mils (Pennisetum glaucum (L.) R. Br.) au moyen de marqueurs enzymatiques et relations entre formes sauvages et cultivées. In: Serge, H (ed.) Le mil en Afrique: diversité génétique et agro-physiologique: potentialités et contraintes pour l'amélioration et la culture. Paris, France: Orstrom, pp. 3356.
Upadhyaya, HD, Reddy, KN and Gowda, CLL (2007) Pearl millet germplasm at ICRISAT genebank – status and impact. SAT eJournal 3: 15.
Upadhyaya, HD, Yadav, D, Reddy, KN, and Gowda, CLL and Singh, S (2011) Development of pearl millet minicore collection for enhanced utilization of germplasm. Crop Science 51: 217223.
Valluru, R, Vadez, V, Hash, CT and Karanam, PA (2010) Minute P application contributes to a better establishment of pearl millet (Pennisetum glaucum (L.) R. Br.) seedling in P deficient soils. Soil Use and Management 26: 3643.
Vom Brocke, K, Christinck, A, Weltzien-R, E, Presterl, T and Geiger, HH (2003) Farmers’ seed systems and management practices determine pearl millet genetic diversity patterns in semiarid regions of India. Crop Science 43: 16801689.
Yadav, OP and Rai, KN (2013) Genetic improvement of pearl millet in India. Agricultural Research 2: 275292.
Yadav, OP, Weltzien-Rattunde, E, Bidinger, FR and Mahalakshmi, V (2000) Heterosis in landrace-based topcross hybrids of pearl millet across arid environments. Euphytica 112: 285295.
Yoshida, S, Ishida, JK, Kamal, NM, Ali, AM, Namba, S and Shirasu, K (2010) A full-length enriched cDNA library and expressed sequence tag analysis of the parasitic weed, Striga Hermonthica. BMC Plant Biology 10: 55.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Plant Genetic Resources
  • ISSN: 1479-2621
  • EISSN: 1479-263X
  • URL: /core/journals/plant-genetic-resources
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Sattler et al supplementary material
Sattler et al supplementary material 2

 Unknown (133 KB)
133 KB
Supplementary materials

Sattler et al supplementary material
Sattler et al supplementary material 1

 Unknown (559 KB)
559 KB


Full text views

Total number of HTML views: 12
Total number of PDF views: 156 *
Loading metrics...

Abstract views

Total abstract views: 165 *
Loading metrics...

* Views captured on Cambridge Core between 6th November 2017 - 19th March 2018. This data will be updated every 24 hours.