Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-29T07:43:15.267Z Has data issue: false hasContentIssue false

Genetic characterization of oleaginous bottle gourd (Lagenaria siceraria) germplasm from Côte d'Ivoire using agromorphological and molecular markers

Published online by Cambridge University Press:  21 November 2022

Ahou Anique Gbotto*
Affiliation:
Laboratoire de Génétique, UFR Agroforesterie, Université Jean Lorougnon Guédé, B.P. 150 Daloa, Côte d'Ivoire
Nasser Kouadio Yao
Affiliation:
Biosciences Eastern and Central Africa – International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709-00200, Nairobi, Kenya
Mercy Kitavi
Affiliation:
International Potato Center (CIP) – Sub Saharan Africa Old Naivasha Road – International Livestock Research Institute, P.O. Box 25171-00603, Nairobi, Kenya
Sarah Karen Osama
Affiliation:
Queensland Alliance for Agriculture Food and Innovation, University of Queensland, St Lucia, 4072, Australia
Richard Habimana
Affiliation:
College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, P.O. Box 57 Nyagatare, Rwanda
Kouamé Kevin Koffi
Affiliation:
Unité de recherche Phytotechnie et Amélioration Génétique, UFR des Sciences de la Nature, Université Nangui Abrogoua, 02 B.P. 801 Abidjan 01, Côte d'Ivoire
Irié Arsène Zoro Bi
Affiliation:
Unité de recherche Phytotechnie et Amélioration Génétique, UFR des Sciences de la Nature, Université Nangui Abrogoua, 02 B.P. 801 Abidjan 01, Côte d'Ivoire
*
Author for correspondence: Ahou Anique Gbotto, E-mail: aniquegbotto@yahoo.fr

Abstract

Being difficult to regenerate and maintain the seeds, the oleaginous bottle gourd was investigated using nine agromorphological traits and 31 amplified fragment length polymorphism (AFLP) markers. Specifically, the study was conducted to determine the intra-specific variability of a total of 173 accessions, which were identified from five agro-ecological regions from Côte d'Ivoire (Centre, East, North and South). Then, the genetic diversity and relationships within accessions were studied using AFLP markers. This characterization using both morphological and AFLP markers was realized in order to ultimately build a reliable core collection. The discriminant analysis, using nine quantitative traits, reveals plant length and seeds number per fruit as discriminating characteristics. From the accessions used for the agromorphological study, 148 were able to be differentiated by the AFLP markers. A range of 52 to 113 bands were amplified per primer combination. As revealed by the analysis of molecular variance (AMOVA), 28% of the total variation resides among accessions and 72% occurs within populations. The AMOVA computed in order to differentiate cultivars, displayed the same trends when no prior grouping of accessions was considered. The differentiation within cultivar (97%) was more than that, among cultivars (3%). Tree topologies inferred by neighbour-joining analysis reflected no clear cut off grouping.

To group accessions, we used a Bayesian clustering analysis which exhibited two clusters. Using the informativeness of the primer combinations analysed in the present study, an orientation was given for the choice of the accessions which would be used to build a core collection.

Type
Research Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of NIAB

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achigan-Dako, EG (ed.) (2008) Phylogenetic and Genetic Variation Analyses in Cucurbit species (Cucurbitaceae) From West Africa: Definition of Conservation Strategies. Göttingen, Germany: Cuvillier Verlag.Google Scholar
Achigan-Dako, EG, Fanou, N, Kouke, A, Avohou, H, Vodouhe, SR and Ahanchede, A (2006) Evaluation agronomique de trois espèces d'Egusi (Cucurbitaceae) utilisées dans l'alimentation au Bénin et élaboration d'un modèle de prédiction du rendement. Biotechnology, Agronomy, Society and Environment 10, 121129.Google Scholar
Achigan-Dako, EG, Fagbemissi, R, Avohou, HT, Vodouhe, RS, Coulibaly, O and Ahanchede, A (2008) Importance and practices of egusi crops (Citrullus lanatus (Thunb.) Matsum. & Nakai, Cucumeropsis mannii Naudin and Lagenaria siceraria (Molina) Standl. cv.’Aklamkpa’) in sociolinguistic areas in Benin. Biotechnology, Agronomy, Society and Environment 12, 393403.Google Scholar
Achu, MB, Fokou, E, Tchiégang, C, Fotso, M and Tchouanguep, MF (2005) Nutritive value of some Cucurbitaceae oilseeds from different regions in Cameroon. African Journal of Biotechnology 4, 13291334.Google Scholar
Al-Maskri, AY, Khan, MM, Iqbal, MJ and Abbas, M (2004) Germinability, vigour and electrical conductivity changes in acceleratedly aged watermelon (Citrullus lanatus T.) seeds. Journal of Food, Agriculture and Environment 2, 100103.Google Scholar
Barro-Kondombo, CP, Brocke, KV, Chantereau, J, Sagnard, F and Zongo, JD (2008) Variabilité phénotypique des sorghos locaux de deux regions du Burkina Faso: la Boucle du Mouhoun et le Centre-Ouest. Cahiers Agricultures 2, 107113.Google Scholar
Bellon, MR, Berthaud, J, Smale, M and Aguirre, JA (2003) Participatory landrace selection for on-farm conservation: an exemple from the central valleys of Oaxaca, Mexico. Genetic Resources and Crop Evolution 50, 401416.CrossRefGoogle Scholar
Biles, CL, Martyn, -RD and Wilson, HD (1989) Isozymes and general proteins from various watermelon cultivars and tissue types. HortScience 24, 810812.CrossRefGoogle Scholar
Burgos, E, Thompson, C, Giordano, M and Tomas, MA (2018) Pre-breeding studies in Panicum coloratum var. coloratum: characterization using agro-morphological traits and molecular markers. Tropical Grasslands-Forrajes Tropicales 6, 8292.CrossRefGoogle Scholar
Chimonyo, VGP and Modi, AT (2013) Seed performance of selected bottle gourd [Lagenaria siceraria (Molina) Standley]. American Journal of Experimental Agriculture 3, 740766.CrossRefGoogle Scholar
Cunff, LL, Fournier-Level, A, Laucou, V, Vezzulli, S, Lacombe, T, Adam-Blondon, A-F, Boursiquot, J-M and This, P (2008) Construction of nested genetic core collections to optimize the exploitation of natural diversity in Vitis vinifera L. subsp. sativa. BMC Plant Biology 8, 14712229.CrossRefGoogle ScholarPubMed
Dagnelie, P (1998) Statistique théorique et appliquée (Tome 2) Bruxelles (Belgique): De Boeck and Larcier s.a., pp. 659.Google Scholar
Dahlberg, JA, Zhang, X, Hart, GE and Mullet, JE (2002) Comparative assessment of variation among Sorghum germplasm accessions using seed morphology and RAPD measurements. Crop Science 42, 291296.CrossRefGoogle ScholarPubMed
Dufresne, F, Stift, M, Vergilino, R and Mable, BK (2014) Recent progress and challenges in population genetics of polyploid organisms: an overview of current state-of-the-art molecular and statistical tools. Molecular Ecology 23, 4069.CrossRefGoogle ScholarPubMed
Emperaire, L, Gilda, SM, Fleury, M, Robert, T, Mckey, D and Pujol, B (2003) Approche comparative de la diversité genetique et de la diversité morphologique des maniocs en Amazonie (Brésil et Guyanes). Actes du BRG 4, 247267.Google Scholar
Evanno, G, Regnaut, S and Goudet, J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14, 26112620.CrossRefGoogle ScholarPubMed
Excoffier, L, Smouse, PE and Quattro, JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479491.CrossRefGoogle ScholarPubMed
Falush, D, Stephens, M and Pritchard, JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 15671587.CrossRefGoogle ScholarPubMed
Falush, D, Stephens, M and Pritchard, JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molecular Ecology Notes 7, 574578.CrossRefGoogle ScholarPubMed
Fao/Ipgri/Onu (2014) Genebank Standards for Plant Genetic Resources for Food and Agriculture. Rome, Italy: FAO, p. 182.Google Scholar
Ferriol, M, Pico, B, de Cordova, PF and Nuez, F (2004) Molecular diversity of a germplasm collection of squash (Cucurbita moschata) determined by SRAP and AFLP markers. Crop Science 44, 653664.CrossRefGoogle Scholar
Fugère, V and Hendry, AP (2018) Human influences on the strength of phenotypic selection. Proceedings of the National Academy of Sciences of the United States of America 115, 1007010075.CrossRefGoogle ScholarPubMed
Gbotto, AA, Koffi, KK, Baudoin, JP and Zoro Bi, IA (2015) Determination of the genetic structure of the oleaginous Lagenaria siceraria of the Nangui Abrogoua University Germplasm Collection. American Journal of Plant Sciences 6, 32313243.CrossRefGoogle Scholar
Gildemacher, PR, Schulte-Geldermann, E, Borus, D, Demo, P, Kinyae, P, Mundia, P and SP, C (2011) Seed potato quality improvement through positive selection by smallholder farmers in Kenya. Potato Research 54, 253266.CrossRefGoogle Scholar
Goré Bi, BN, Baudoin, J-P and Zoro Bi, IA (2011) Effects of the numbers of foliar insecticide applications on the production of the oilseed watermelon Citrullus lanatus. Sciences & Nature 8, 5362.Google Scholar
Goré Bi, BN, Koffi, KK, Baudoin, JP and Zoro Bi, IA (2012) Effects of frequency of weeding on oilseed Citrullus lanatus production in woodland savanna of Côte d'Ivoire. Journal of Applied Agricultural Research 4, 139146.Google Scholar
Haque, AHMM, Elazegui, FA, Taher Mia, MA, Kamal, MM and Manjurul Haque, M (2012) Increase in rice yield through the use of quality seeds in Bangladesh. African Journal of Agricultural Research 7, 38193827.Google Scholar
Hashizume, T, Sato, T and Hirai, M (1993) Determination of genetic purity of hybrid seed in watermelon (Citrullus lanatus) and Lycopersicon esculentum using random amplified polymorphic DNA RAPD. Japan Journal Breeding 43, 367375.Google Scholar
Jakobsson, M and Rosenberg, NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics (Oxford, England) 23, 18011806.CrossRefGoogle ScholarPubMed
Kalyanrao, P, Tomar, BS, Singh, B and Aher, B (2016) Morphological characterization of parental lines and cultivated genotypes of bottle gourd (Lagenaria siceraria). Indian Journal of Agricultural Sciences 86, 6570.Google Scholar
Kitavi, M (2015) Genetic diversity, evolutionary history and epigenetic analysis of East African highland bananas (PhD thesis). National University of Ireland Galway.Google Scholar
Koffi, KK, Gbotto, AA, Malice, M, Djè, Y, Bertin, P, Baudoin, JP and Zoro Bi, IA (2008) Morphological and allozyme variation in a collection of Cucumeropsis mannii Naudin (Cucurbitaceae) from Côte d'Ivoire. Biochemical Systematics and Ecology 36, 777789.CrossRefGoogle Scholar
Koffi, KK, Anzara, GK, Malice, M, Djè, Y, Bertin, P, Baudoin, JP and Zoro Bi, IA (2009) Morphological and allozyme variation in a collection of Lagenaria siceraria (Molina) Standl. from Côte d'Ivoire. Biotechnology, Agronomy, Society and Environment 13, 257270.Google Scholar
Konan, AJ, Guyot, R, Koffi, KK, Vroh-Bi, I and Zoro Bi, IA (2020) Molecular confirmation of varietal status in bottle gourd (Lagenaria siceraria) using genotyping-by-sequencing. Genome 63, 111.CrossRefGoogle ScholarPubMed
Lee, SJ, Shin, JS, Park, KW and Hong, YP (1996) Detection of genetic diversity using RAPD-PCR and sugar analysis in watermelon [Citrullus lanatus (Thung.) Mansf.] germplasm. Theoretical and Applied Genetics 92, 719725.CrossRefGoogle Scholar
Levi, A and Thomas, C (1999) An improved procedure for isolation of high quality DNA from watermelon and melon leaves. Cucurbit Genetics Cooperative Report 22, 4142.Google Scholar
Levi, A, Thomas, CE, Keinath, AP and Wehner, TC (2001) Genetic diversity among watermelon (Citrullus lanatus and Citrullus colocynthis) accessions. Genetic Resources and Crop Evolution 48, 559566.CrossRefGoogle Scholar
Loukou, AL, Lognay, G, Barthelemy, J-P, Maesen, P, Baudoin, JP and Zoro Bi, IA (2011) Effect of harvest time on seed oil and protein contents and compositions in the oleaginous gourd Lagenaria siceraria (Molina) Standl. Journal of the Science of Food and Agriculture 91, 20732080.CrossRefGoogle ScholarPubMed
Loukou, AL, Lognay, G, Baudoin, JP, Kouamé, LP and Zoro Bi, IA (2012) Effects of fruit maturity on oxidative stability of Lagenaria siceraria (molina) Standl. seed oil extracted with hexane. Journal of Food Biochemistry 37, 475484.CrossRefGoogle Scholar
Lucchin, M, Barcassia, G and Parrini, P (2003) Characterization of a flint maize (Zea mays L.) Italian landrace: I. Morpho-phenological and agronomic traits. Genetic Resources and Crop Evolution 50, 315327.CrossRefGoogle Scholar
Lynch, M and Milligan, BG (1994) Analysis of population genetic structure with RAPD markers. Molecular Ecological Notes 3, 9199.CrossRefGoogle ScholarPubMed
Maggs-Kölling, GL, Madsen, S and Christiansen, JL (2000) A phenetic analysis of morphological variation in Citrullus lanatus in Namibia. Genetic Resources and Crop Evolution 47, 385393.CrossRefGoogle Scholar
Marr, KL, Xia, Y-M and Bhattarai, NK (2007) Allozymic, morphological, phenological, linguistic, plant use, and nutritional data of Benincasa hispida (Cucurbitaceae). Economic Botany 61, 4459.CrossRefGoogle Scholar
Mashilo, J, Shimelis, H and Odindo, A (2017) Phenotypic and genotypic characterization of bottle gourd [Lagenaria siceraria (Molina) Standley] and implications for breeding: a review. Scientia Horticulturae 222, 136144.Google Scholar
McGregor, CE, Lambert, CA, Greyling, MM, Louw, JH and Warnich, L (2000) A comparative assessment of DNA fingerprinting techniques (RAPD, ISSR, AFLP and SSR) in tetraploid potato (Solanum tuberosum L.) germplasm. Euphytica 113, 135144.CrossRefGoogle Scholar
Minsart, L-A, Zoro, Bi IA, Dje, Y, Baudoin, J-P, Jacquemart, A-L and Bertin, P (2011) Set up of simple sequence repeat markers and first investigation of the genetic diversity of West-African Watermelon (Citrullus lanatus ssp. vulgaris Oleaginous Type). Genetic Resources and Crop Evolution 58, 805814.CrossRefGoogle Scholar
Mladenovic, E, Berenji, J, Ognjanov, V, Ljubojevic, M and Cukanovic, J (2012) Genetic variability of bottle gourd Lagenaria siceraria (mol.) Standley and its morphological characterization by multivariate analysis. Archives of Biological Science, Belgrade 64, 573583.CrossRefGoogle Scholar
Montes-Hernandez, S and Eguiarte, LE (2002) Genetic structure and indirect estimates of gene flow in three taxa of Cucurbita (Cucurbitaceae) in western Mexico. American Journal of Botany 89, 11561163.CrossRefGoogle ScholarPubMed
Morimoto, Y, Maundu, P, Fujimaki, H and Morishima, H (2005) Diversity of landraces of the white-flowered gourd (Lagenaria siceraria) and its wild relatives in Kenya: fruit and seed morphology. Genetic Resources and Crop Evolution 52, 737747.CrossRefGoogle Scholar
Mujaju, C, Sehic, J, Werlemark, G, Garkava-Gustavsson, L, Fatih, M and Nybom, H (2010) Genetic diversity in watermelon (Citrullus lanatus) landraces from Zimbabwe revealed by RAPD and SSR markers. Hereditas 147, 142153.CrossRefGoogle ScholarPubMed
Navot, N and Zamir, D (1987) Isozyme and seed protein phylogeny of the genus Citrullus (Cucurbitaceae). Plant Systematics and Evolution 156, 6167.CrossRefGoogle Scholar
N'Gaza, ALF, Kouassi, KI, Koffi, KK, Kouakou, KL, Baudoin, J-P and Zoro, BIA (2019) Prevalence and variation of viviparous germination with respect to fruit maturation in the bottle gourd Lagenaria siceraria (Molina) Standley (Cucurbitaceae). Heliyon 5, e02584e02584.CrossRefGoogle ScholarPubMed
Nicolaï, M, Cantet, M, Lefebvre, V, Sage-Palloix, A-M and Palloix, A (2013) Genotyping a large collection of pepper (Capsicum spp.) with SSR loci brings new evidence for the wild origin of cultivated C. annuum and the structuring of genetic diversity by human selection of cultivar types. Genetic Resources and Crop Evolution 60, 23752390.CrossRefGoogle Scholar
Nimmakayala, P, Tomason, YR, Jeong, J, Ponniah, SK, Karunathilake, A, Levi, A, Perumal, R and Reddy, UK (2009) Genetic reticulation and interrelationships among Citrullus species as revealed by joint analysis of shared AFLPs and species-specific SSR alleles. Plant Genetic Resources 8, 1625.CrossRefGoogle Scholar
Peakall, R and Smouse, PE (2006) GenAlEx 6: genetic analysis in excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288295.CrossRefGoogle Scholar
Perrier, X, Flori, A and Bonnot, F (2003) Data analysis methods. In Hamon, P, Seguin, M, Perrier, X and Glaszmann, JC (eds), Genetic Diversity of Cultivated Tropical Plants. Montpellier: Science Publishers, pp. 4376.Google Scholar
PIC-2004 (2006) Valorisation des cultures vivrières mineures de Côte d'Ivoire: cas des pistaches (Cucurbitacées à graines consommées en sauce). Rapport Scientifique annuel du projet PIC-2004–pistaches. Université d'Abobo Adjamé, Abidjan (Côte d'Ivoire), p. 73.Google Scholar
Pressoir, G and Berthaud, J (2004) Patterns of population structure in maize landraces from the central valleys of Oaxaca in Mexico. Heredity 92, 8894.CrossRefGoogle ScholarPubMed
Pritchard, JK, Stephens, M and Donnelly, P (2000) Inference of population structure using multilocus genotype data. Genetics 155, 945959.CrossRefGoogle ScholarPubMed
Priyanka, V, Kumar, R, Dhaliwal, I and Kaushik, P (2021) Germplasm conservation: instrumental in agricultural biodiversity-a review. Sustainability 13, 6743.CrossRefGoogle Scholar
Ram, HH, Sharma, K and Jaiswal, HR (2006) Molecular characterization of promising genotypes in bottle gourd including a novel segmented leaf type through RAPD. Vegetable Science 33, 14.Google Scholar
Rosenberg, NA (2004) DISTRUCT: a program for the graphical display of population structure. Molecular Ecological Notes 4, 137138.Google Scholar
SAS (2004) Statistical Analysis System, User's Guide. Statistical. Version 7th ed. Cary, NC, USA: Statistical Analysis SAS. Institute, Inc.Google Scholar
Sithole, NJ, Modi, AT and Mabhaudhi, T (2016) Seed quality of selected bottle gourd landraces compared with popular cucurbits. South African Journal of Plant and Soil 33, 133139.CrossRefGoogle Scholar
Sivaraj, N and Pandravada, SR (2005) Morphological diversity for fruit characters in bottle gourd germplasm from tribal pockets of Telangana region of Andhra Pradesh, India. Asian Agriculture-History 9, 305310.Google Scholar
Sokal, RR and Michener, CD (1958) A Statistical Method for Evaluating Systematic Relationships. Kansas, USA: The University of Kansas Scientific Bulletin, pp. 14091438.Google Scholar
Sorkheh, K, Shiran, B, Aranzana, MJ, Mohammadi, SA and Martínez-Gomez, P (2007) Application of amplified fragment length polymorphism (AFLPs) analysis to plant breeding and genetics: procedures, applications and prospects. Journal of Food, Agriculture & Environment 5, 197204.Google Scholar
StatSoft (2005) STATISTICA, logiciel d'analyse de données. Available at www.statsoft.fr.Google Scholar
Uluturk, ZI, Frary, A and Doganlar, S (2011) Determination of genetic diversity in watermelon [Citrullus lanatus (Thunb.) Matsum & Nakai] germplasm. Australian Journal of Crop Science 5, 18321836.Google Scholar
Upadhyaya, HD and Gowda, CLL (2009) Managing and Enhancing the Use of Germplasm-Strategies and Methodologies; Technical Manual Patancheru, India: No. 10; ICRISAT, p. 227.Google Scholar
Upadhyaya, H, Laxmipathi Gowda, C and Dvssr, S (2007) Plant genetic resources management: collection, characterization, conservation and utilization. Journal of SAT Agricultural Research 6, 116.Google Scholar
van Hintum, TJL (1994) Comparison of marker systems and construction of a core collection in a pedigree of European spring barley. Theoretical and Applied Genetics 89, 991997.CrossRefGoogle Scholar
van Hintum, TJL, Brown, AHD, Spillane, C and Hodgkin, T (eds) (2000) Core collections of plant genetic resources. IPGRI Technical Bulletin No 3. International Plant Genetic Resources Institute, Rome, Italy.Google Scholar
Vekemans, X (2002) AFLP-SURV. Laboratoire de Génétique et Ecologie Végétale, Université Libre de Bruxelle, Bruxelles, Belgium.Google Scholar
Vekemans, X, Beauwens, T, Lemaire, M and Roldan-Ruiz, I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Molecular Ecological Notes 11, 139151.CrossRefGoogle ScholarPubMed
Velazquez-Rosas, N, Ruiz-Guerra, B, Sanchez-Coronado, ME, De Buen, AG and Orozco-Segovia, A (2017) Morphological variation in fruits and seeds of Ceiba aescufolia and its relationship with germination and seedling biomass. Botanical Sciences 95, 111.CrossRefGoogle Scholar
Vos, P and Kuiper, M (1997) AFLP Analysis. In Caetano-Anollés, G and Gresshoffand, PM (eds), DNA markers: Protocols, Applications and Overviews. New York: Wiley J. & Sons, inc, pp. 115131.Google Scholar
Vos, P, Hogers, R, Bleeker, M, Reijans, M, van de Lee, T, Hornes, M, Frijters, A, Pot, J, Peleman, J, Kuiper, M and Zabeau, M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23, 44074414.CrossRefGoogle ScholarPubMed
Wang, L, Guan, Y, Guan, R, Li, Y, Ma, Y, Dong, Z, Liu, X, Zhang, H, Zhang, Y, Liu, Z, Chang, R, Xu, H, Li, L, Lin, F, Luan, W, Yan, Z, Ning, X, Zhu, L, Cui, Y, Piao, R, Liu, Y, Chen, P and Qiu, L (2006) Establishment of Chinese soybean (Glycine max) core collections with agronomic traits and SSR markers. Euphytica 151, 215223.CrossRefGoogle Scholar
Wang, F, Zhang, S, Liu, MG, Lin, XS, Liu, HJ, Peng, YL, Lin, Y, Huang, JB and Luo, CX (2014) Genetic diversity analysis reveals that geographical environment plays a more important role than rice cultivar in Villosiclava virens population selection. Applied and environmental microbiology 80, 28112820.CrossRefGoogle Scholar
Yao, KAG, Koffi, KK, Ondo-Azi, SA, Baudoin, JP and Zoro Bi, IA (2015) Seed yield component identification and analysis for exploiting recombinative heterosis in bottle gourd. International Journal of Vegetable Science 21, 441453.CrossRefGoogle Scholar
Yetişir, H and Aydin, A (2019) Fruit, seed characteristics and seed yield of some bottle gourd (Lagenaria siceraria Standl. Mol.) genotypes from Turkish germplasm. Ksu Journal of Agriculture and Nature 22, 272281.Google Scholar
Zamir, D, Navot, N and Rudich, J (1984) Enzyme polymorphism in Citrullus lanatus and C. colocynthis in Israel and Sinai. Plant Systematics and Evolution 146, 137163.CrossRefGoogle Scholar
Zhivotovsky, LA (1999) Estimating population structure in diploids with multilocus dominant DNA markers. Molecular Ecological Notes 8, 907913.Google ScholarPubMed
Zoro Bi, IA, Koffi, KK and Djè, Y (2003) Caractérisation botanique et agronomique de trois espèces de Cucurbites consommées en sauce en Afrique de l'Ouest: Citrullus sp., Cucumeropsis mannii Naudin et Lagenaria siceraria (Molina) Standl. Biotechnology, Agronomy, Society and Environment 7, 189199.Google Scholar
Zoro Bi, IA, Koffi, KK, Djè, Y, Malice, M and Baudoin, JP (2006) Indigenous cucurbits of Côte d'Ivoire: a review of their genetic resources. Sciences & Nature 3, 19.Google Scholar
Supplementary material: File

Gbotto et al. supplementary material

Tables S1-S4

Download Gbotto et al. supplementary material(File)
File 52 KB