Hostname: page-component-cb9f654ff-fg9bn Total loading time: 0 Render date: 2025-08-02T09:20:56.831Z Has data issue: false hasContentIssue false

Genomic resources for Dyckia ibiramensis: A set of microsatellite markers and the plastid genome sequence of a threatened Brazilian bromeliad

Published online by Cambridge University Press:  29 July 2025

Joana Nascimento Oliveira Zeist*
Affiliation:
Department of Plant Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
Liana Bulcão Bittencourt Petrarca
Affiliation:
Department of Plant Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
Yohan Fritsche
Affiliation:
Department of Plant Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
Ana K. de Sousa Silva
Affiliation:
Department of Plant Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
André Ricardo Zeist
Affiliation:
Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
Tiago Montagna
Affiliation:
Department of Plant Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
Valdir Marcos Stefenon
Affiliation:
Department of Plant Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
*
Corresponding author: Joana Nascimento Oliveira Zeist; Email: joanazeist@gmail.com

Abstract

Dyckia ibiramensis is an endemic species from southern Brazil, known for its ability to adapt to extreme environmental variations. This study reports the development of species-specific microsatellite markers and the assembly and annotation of the plastid genome of D. ibiramensis, aiming to generate new genomic resources useful for studies on the conservation and evolution of this endangered species. A total of 33,112 microsatellite loci were identified, of which 10 were selected and validated for genotyping 30 individuals from natural populations, showing high genetic variability. These 10 microsatellite markers were very informative for the evaluation of genetic variability. These microsatellite markers evidenced moderate to high genetic diversity at the individual level, low population differentiation, and the capacity of the species to recover population size from ancient genetic bottlenecks. The assembled plastid genome revealed conserved structures and the occurrence of features at the gene level, likely related to stress response to environmental conditions. This study expands the understanding of the genetics of D. ibiramensis, highlighting the importance of genomic strategies for the conservation of endangered species. In situ and ex situ conservation strategies should be used to avoid the extinction of this endemic southern Brazilian genetic resource in nature.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of National Institute of Agricultural Botany.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Cao, Y, Wang, L, Xu, K, Kou, C, Zhang, Y, Wei, G, He, J, Wang, Y and Zhao, L (2005) Information theory-based algorithm for in silico prediction of PCR products with whole genomic sequences as templates. BMC Bioinformatics 6, 190. https://doi.org/10.1186/1471-2105-6-190CrossRefGoogle ScholarPubMed
Chan, PP and Lowe, TM (2019) tRNAscan-SE: Searching for tRNA Genes in Genomic Sequences. Methods in Molecular Biology (Clifton, N.J.) 1962, 114. https://doi.org/10.1007/978-1-4939-9173-0_1CrossRefGoogle ScholarPubMed
Cornuet, JM and Luikart, G (1996) Description and Power Analysis of Two Tests for Detecting Recent Population Bottlenecks From Allele Frequency Data. Genetics 144(4), 20012014. https://doi.org/10.1093/genetics/144.4.2001CrossRefGoogle ScholarPubMed
Doyle, JJ and Doyle, JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19, 1115.Google Scholar
Excoffier, L and Lischer, HEL (2010) Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10, 564567. https://doi.org/10.1111/j.1755-0998.2010.02847.xCrossRefGoogle ScholarPubMed
Excoffier, L, Smouse, PE and Quattro, JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131(2), 479491. https://doi.org/10.1093/genetics/131.2.479CrossRefGoogle ScholarPubMed
Fischer, MC, Rellstab, C, Leuzinger, M, Roumet, M, Gugerli, F, Shimizu, KK, Holderegger, R and Widmer, A (2017) Estimating genomic diversity and population differentiation – An empirical comparison of microsatellite and SNP variation in Arabidopsis halleri. BMC Genomics 18, 69. https://doi.org/10.1186/s12864-016-3459-7CrossRefGoogle ScholarPubMed
Flood, PJ and Hancock, AM (2017) The genomic basis of adaptation in plants. Current Opinion in Plant Biology 36, 8894. https://doi.org/10.1016/j.pbi.2017.02.003CrossRefGoogle ScholarPubMed
Fu, M, Lin, X, Zhou, Y, Zhang, C, Liu, B, Feng, D, Wang, J, Wang, H and Jin, H (2022) OTP970 Is Required for RNA Editing of Chloroplast ndhB Transcripts in Arabidopsis thaliana. Genes 13(1), 139. https://doi.org/10.3390/genes13010139CrossRefGoogle ScholarPubMed
Garza, JC and Williamson, EG (2001) Detection of reduction in population size using data from microsatellite loci. Molecular Ecology 10, 305318. https://doi.org/10.1046/j.1365-294X.2001.01190.xCrossRefGoogle ScholarPubMed
González-Astorga, J, Cruz-Angón, A, Flores-Palacios, A and Vovides, AP (2004) Diversity and genetic structure of the Mexican endemic epiphyte Tillandsia achyrostachys E. Morr. ex Baker var. Achyrostachys (Bromeliaceae). Annals of Botany 94, 545551. https://doi.org/10.1093/aob/mch171CrossRefGoogle ScholarPubMed
Gossmann, TI, Song, B-H, Windsor, AJ, Mitchell-Olds, T, Dixon, CJ, Kapralov, MV, Filatov, DA and Eyre-Walker, A (2010) Genome wide analyses reveal little evidence for adaptive evolution in many plant species. Molecular Biology and Evolution 27, 18221832. https://doi.org/10.1093/molbev/msq079CrossRefGoogle ScholarPubMed
Hmeljevski, KV, Reis, A, Montagna, T and Dos Reis Ms, (2011) Genetic diversity, genetic drift and mixed mating system in small subpopulations of Dyckia ibiramensis, a rare endemic bromeliad from Southern Brazil. Conservation Genetics 12, 761769. https://doi.org/10.1007/s10592-011-0183-3CrossRefGoogle Scholar
Hmeljevski, KV, Reis, A, Reis, MS, Rogalski, JM, Daltrini-Neto, C and Lenzi, M (2007) Resultados preliminares da biologia reprodutiva de Dyckia ibiramensis Reitz (Bromeliaceae): Uma espécie rara e endêmica de Santa Catarina. Revista Brasileira de Biociências 5, 267269 https://seer.ufrgs.br/index.php/rbrasbioci/article/view/115889 (accessed 5 May 2024).Google Scholar
Hornung-Leoni, CT, Sosa, V, Simpson, J and Gil, K (2013) Genetic variation in the emblematic Puya raimondii (Bromeliaceae) from Huascarán National Park, Peru. Crop Breeding and Applied Biotechnology 13, 6774. https://doi.org/10.1590/S1984-70332013000100008CrossRefGoogle Scholar
Krapp, F, de Barros Pinangé Ds, , Benko-Iseppon, AM, Leme, EMC and Weising, K (2014) Phylogeny and evolution of Dyckia (Bromeliaceae) inferred from chloroplast and nuclear sequences. Plant Systematics and Evolution 300, 15911614. https://doi.org/10.1007/s00606-014-0985-0Google Scholar
Krapp, F and Eggli, U (2020) Dyckia Bromeliaceae. Eggli, U and Nyffeler, R(eds) Monocotyledons. Berlin, Heidelberg: Springer Berlin Heidelberg, 893962. https://doi.org/10.1007/978-3-662-56486-8_80CrossRefGoogle Scholar
Laslett, D and Canback, B (2004) ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Research. 32, 1116. https://doi.org/10.1093/nar/gkh152CrossRefGoogle ScholarPubMed
Lemos, RPM, Matielo, CBD, Beise, DC, Da Rosa, VG, Sarzi, DS, Roesch, LFW and Stefenon, VM (2018) Characterization of plastidial and nuclear SSR markers for understanding invasion histories and genetic diversity of Schinus molle L. Biology 7, 43. https://doi.org/10.3390/biology7030043CrossRefGoogle ScholarPubMed
Lohse, M, Drechsel, O, Kahlau, S and Bock, R (2013) OrganellarGenomeDRAW–a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Research. 4, 575581. https://doi.org/10.1093/nar/gkt289CrossRefGoogle Scholar
Luikart, G, Allendorf, F, Cornuet, J-M and Sherwin, W (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. Journal of Heredity 89, 238247. https://doi.org/10.1093/jhered/89.3.238CrossRefGoogle ScholarPubMed
Mouga, DMDS, Possamai, BT, Dec, E and Silva, SMC (2017) Pollinic characterization of Raulinoa echinata R. S. Cowan (Rutaceae), Dyckia brevifolia Baker and Dyckia ibiramensis Reitz (Bromeliaceae), reophyte and saxicolous endemic species of river Itajaí-Açu, Santa Catarina, Brazil. Acta Biológica Catarinense 4, 7182. https://doi.org/10.21726/abc.v4i1.491CrossRefGoogle Scholar
Nagel, JC, Ceconi, DE, Poletto, I and Stefenon, VM (2015) Historical gene flow within and among populations of Luehea divaricata in the Brazilian Pampa. Genetica 143, 317329. https://doi.org/10.1007/s10709-015-9830-9CrossRefGoogle ScholarPubMed
Pacheco, TG, Lopes, AS, Welter, JF, Yotoko, KSC, Otoni, WC, Vieira, LN, Guerra, MP, Nodari, RO, Balsanelli, E, Pedrosa, FO, Souza, EM and Rogalski, M (2020) Plastome sequences of the subgenus Passiflora reveal highly divergent genes and specific evolutionary features. Plant Molecular Biology 104, 2137. https://doi.org/10.1007/s11103-020-01020-zCrossRefGoogle ScholarPubMed
Peakall, R and Smouse, PE (2006) GenALEx 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288295. https://doi.org/10.1111/j.1471-8286.2005.01155.xCrossRefGoogle Scholar
Peakall, R and Smouse, PE (2012) GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 25372539. https://doi.org/10.1093/bioinformatics/bts460CrossRefGoogle ScholarPubMed
Petry, VS, Stefenon, VM, Machado, LO, Klabunde, GHF, Pedrosa, FO and Nodari, RO (2019) Repetitive genomic elements in Campomanesia xanthocarpa: Prospection, characterization and cross amplification of molecular markers. 3 Biotech 9, 423. https://doi.org/10.1007/s13205-019-1953-8CrossRefGoogle ScholarPubMed
Pinangé, DSB, Krapp, F, Zizka, G, Silvestro, D, Leme, EMC, Weising, K and Benko-Iseppon, AM (2017) Molecular phylogenetics, historical biogeography and character evolution in Dyckia (Bromeliaceae, Pitcairnioideae). Botanical Journal of the Linnean Society 183(1), 3956. https://doi.org/10.1111/boj.12489Google Scholar
Piry, S, Luikart, G and Cornuet, J-M (1999) Computer note. BOTTLENECK: A computer program for detecting recent reductions in the effective size using allele frequency data. Journal of Heredity 90, 502503. https://doi.org/10.1093/jhered/90.4.502CrossRefGoogle Scholar
Ramadan, AM (2020) Light/heat effects on RNA editing in chloroplast NADH-plastoquinone oxidoreductase subunit 2 (ndhB) gene of Calotropis (Calotropis procera). Journal of Genetic Engineering and Biotechnology 18, 18. https://doi.org/10.1186/s43141-020-00064-4CrossRefGoogle ScholarPubMed
Reitz, R (1983) Bromeliáceas e a malária-bromélia endêmica. In Reitz, R (ed), Flora Ilustrada Catarinense - Fascículo Bromélias. Itajaí: HBR, 1808.Google Scholar
Rousset, F (2008) Genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Molecular Ecology Resources 8, 248249. https://doi.org/10.1111/j.1471-8286.2007.01931.xCrossRefGoogle ScholarPubMed
Rozas, J, Ferrer-Mata, A, Sánchez-delbarrio, JC, Guirao-Rico, S, Librado, P, Ramos-Onsins, SE and Sánchez-Gracia, A (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution 34, 32993302. https://doi.org/10.1093/molbev/msx248CrossRefGoogle ScholarPubMed
Schuelke, M (2000) An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology 18, 233234. https://doi.org/10.1038/72708CrossRefGoogle ScholarPubMed
Sheikh-Assadi, M, Naderi, R, Kafi, M, Fatahi, R, Salami, SA and Shariati, V (2022) Complete chloroplast genome of Lilium ledebourii (Baker) Boiss and its comparative analysis: Insights into selective pressure and adaptive evolution. Scientific Reports 12, 9375. https://doi.org/10.1038/s41598-022-13449-xCrossRefGoogle Scholar
Sheu, Y, Cunha-Machado, AS, Abpl, G, Favoreto, FC, Soares, TBC and Miranda, FD (2017) Genetic diversity of Bromeliaceae species from the Atlantic Forest. Genetics and Molecular Research 16. https://doi.org/10.4238/gmr16029636CrossRefGoogle ScholarPubMed
Silva, GM, Lopes, AS, Pacheco, TG, Machado, KLG, Silva, MC, Oliveira, JD, Baura, VA, Balsanelli, E, Souza, EM, Pedrosa, FO and Rogalski, M (2021) Genetic and evolutionary analyses of plastomes of the subfamily Cactoideae (Cactaceae) indicate relaxed protein biosynthesis and tRNA import from cytosol. Brazilian Journal of Botany 44, 97116. https://doi.org/10.1007/s40415-020-00689-2CrossRefGoogle Scholar
Soares, LE, Goetze, M, Zanella, CM and Bered, F (2018) Genetic diversity and population structure of Vriesea reitzii (Bromeliaceae), a species from the Southern Brazilian Highlands. Genetics and Molecular Biology 41, 308317. https://doi.org/10.1590/1678-4685-GMB-2017-0062CrossRefGoogle ScholarPubMed
Srivastava, S, Avvaru, AK, Sowpati, DT and Mishra, RK (2019) Patterns of microsatellite distribution across eukaryotic genomes. BMC Genomics 20, 153. https://doi.org/10.1186/s12864-019-5516-5CrossRefGoogle ScholarPubMed
Stefenon, VM, Gailing, O and Finkeldey, R (2007) Genetic structure of Araucaria angustifolia (Araucariaceae) populations in Brazil: Implications for the in situ conservation of genetic resources. Plant Biology 9, 516525. https://doi.org/10.1055/s-2007-964974CrossRefGoogle ScholarPubMed
Tillich, M, Lehwark, P, Pellizzer, T, Ulbricht-Jones, ES, Fischer, A, Bock, R and Greiner, S (2017) GeSeq – Versatile and accurate annotation of organelle genomes. Nucleic Acids Research 45, W6W11. https://doi.org/10.1093/nar/gkx391CrossRefGoogle ScholarPubMed
Tyagi, S, Kabade, PG, Gnanapragasam, N, Singh, UM, Gurjar, AKS, Rai, A, Sinha, P, Kumar, A and Singh, VK (2023) Codon usage provides insights into the adaptation of rice genes under stress conditions. International Journal of Molecular Sciences 24, 1098. https://doi.org/10.3390/ijms24021098CrossRefGoogle Scholar
Van Oosterhout, C, Hutchinson, WF, Wills, DPM and Shipley, P (2004) Micro-checker: Software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4, 535538. https://doi.org/10.1111/j.1471-8286.2004.00684.xCrossRefGoogle Scholar
Vieira, LN, Rogalski, M, Faoro, H, Fraga, HPF, Anjos, KG, Picchi, GFA, Nodari, RO, Pedrosa, FO, Souza, EM and Guerra, MP (2016) The plastome sequence of the endemic Amazonian conifer, Retrophyllum piresii (Silba) C.N.Page, reveals different recombination events and plastome isoforms. Tree Genetics & Genomes 12, 10. https://doi.org/10.1007/s11295-016-0968-0CrossRefGoogle Scholar
Wambugu, PW, Ndjiondjop, M-N and Henry, RJ (2018) Role of genomics in promoting the utilization of plant genetic resources in genebanks. Briefings in Functional Genomics 17, 198206. https://doi.org/10.1093/bfgp/ely014CrossRefGoogle ScholarPubMed
Wang, X and Wang, L (2016) GMATA: An integrated software package for genome-scale SSR mining, marker development, and viewing. Frontiers in Plant Science 7. https://doi.org/10.3389/fpls.2016.01350Google ScholarPubMed
Wrege, MS, Steinmetz, S, Reisser Júnior, C and Almeida, IR (2012) Atlas Climático da Região Sul Do Brasil: estados Do Paraná, Santa Catarina E Rio Grande Do Sul. 1st. Pelotas: Embrapa Clima Temperado Colombo Embrapa Florestas 336.Google Scholar
Yao, X, Ye, Q, Kang, M and Huang, H (2007) Microsatellite analysis reveals interpopulation differentiation and gene flow in the endangered tree Changiostyrax dolichocarpa (Styracaceae) with fragmented distribution in central China. New Phytologist 176, 472480. https://doi.org/10.1111/j.1469-8137.2007.02175.xCrossRefGoogle ScholarPubMed
Zanella, CM, Janke, A, Palma-Silva, C, Kaltchuk-Santos, E, Pinheiro, FG, Paggi, GM, Soares, LES, Goetze, M, Büttow, MV and Bered, F (2012) Genetics, evolution and conservation of Bromeliaceae. Genetics and Molecular Biology 35, 10201026. https://doi.org/10.1590/S1415-47572012000600017CrossRefGoogle ScholarPubMed
Supplementary material: File

Zeist et al. supplementary material

Zeist et al. supplementary material
Download Zeist et al. supplementary material(File)
File 14.6 KB