Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-16T22:31:54.368Z Has data issue: false hasContentIssue false

Mapping wheat powdery mildew resistance derived from Aegilops markgrafii

Published online by Cambridge University Press:  14 May 2012

Annette Weidner
Affiliation:
Saatzucht Bauer Biendorf GmbH & Co. KG, Kaiser-Otto-Straße 8, 06406Bernburg (Saale), Germany Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466Gatersleben, Germany
Marion S. Röder
Affiliation:
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466Gatersleben, Germany
Andreas Börner*
Affiliation:
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466Gatersleben, Germany
*
*Corresponding author. E-mail: boerner@ipk-gatersleben.de

Abstract

The pattern of inheritance of powdery mildew resistance expressed by two bread wheat (cultivar ‘Alcedo’)/Aegilops markgrafii introgression lines was explored using F2 populations bred from crosses made with the powdery mildew-susceptible cultivar ‘Kanzler’. Disease reaction was tested at both seedling and adult plant stages. Two resistance loci, designated QPm.ipk-1A and QPm.ipk-7A, were identified as mapping to the distal ends of chromosome arms 1AS and 7AL, respectively. Whereas QPm.ipk-1A was expressed throughout the plant's life, QPm.ipk-7A was only effective at the seedling stage. The map location of both resistance loci indicated that resistances originated from A. markgrafii. The possible genetic relationship of these disease-resistant genes to known Pm genes is discussed in the context of synteny.

Type
Short Communication
Copyright
Copyright © NIAB 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bouget, Y, Lemoine, J, Pavoine, MT, Barloy, D and Doussinault, G (2002) Identification of a microsatellite marker associated with Pm3 resistance alleles to powdery mildew in wheat. Plant Breeding 121: 325329.CrossRefGoogle Scholar
Ganal, MW and Röder, MS (2007) Microsatellite and SNP markers in wheat breeding. In: Varshney, RK and Tuberosa, R (eds) Genomics Assisted Crop Improvement, Vol. 2: Genomics Applications in Crops. Dordrecht: Springer, pp. 124.Google Scholar
Iqbal, N, Eticha, F, Khlestkina, EK, Weidner, A, Röder, MS and Börner, A (2007) The use of simple sequence repeat (SSR) markers to identify and map alien segments carrying genes for effective resistance to leaf rust in bread wheat. Plant Genetic Resources: Characterisation and Utilisation 5: 100103.Google Scholar
Junghans, W (1994) Charakterisierung von mehltauresistenten Triticum aestivum – Aegilops markgrafii Introgressionslinien 129PhD Thesis, Martin-Luther-University Halle-Wittenberg, Germany.Google Scholar
McIntosh, RA, Wellings, CR and Park, RF (1995) Wheat Rusts: An Atlas of Resistance Genes. Melbourne/Dordrecht: CSIRO Australia/Kluwer Academic Publishers, 205 pp.Google Scholar
McIntosh, RA, Yamazaki, Y, Dubcovsky, J, Rogers, J, Morris, C, Somers, DJ, Appels, R and Devos, KM (2008) Catalogue of gene symbols for wheat. http://www.shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp.Google Scholar
McIntosh, RA, Dubcovsky, J, Rogers, WJ, Morris, CF, Appels, R and Xia, XC (2009) V. Catalogue of gene symbols for wheat: 2009 supplement. Annual Wheat Newsletter 55: 256278.Google Scholar
McIntosh, RA, Dubcovsky, J, Rogers, WJ, Morris, CF, Appels, R and Xia, XC (2010) V. Catalogue of gene symbols for wheat: 2010 supplement. Annual Wheat Newsletter 56: 273281.Google Scholar
McIntosh, RA, Dubcovsky, J, Rogers, WJ, Morris, CF, Appels, R and Xia, XC (2011) IV. Catalogue of gene symbols for wheat: 2011 supplement. Annual Wheat Newsletter 57: 303321.Google Scholar
Nelson, JC (1997) QGENE: software for marker-based genomic analysis and breeding. Molecular Breeding 3: 239245.Google Scholar
Neu, C, Stein, N and Keller, B (2002) Genetic mapping of the Lr20-Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat. Genome 45: 737744.Google Scholar
Paillard, S, Schnurbusch, T, Winzeler, M, Messmer, M, Sourdille, P, Abderhalden, O, Keller, B and Schachermayr, G (2003) An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theoretical and Applied Genetics 107: 12351242.Google Scholar
Perugini, LD, Murphy, JP, Marshall, DS and Brown-Guedira, G (2007) Pm37, a new broadly effective powdery mildew resistance gene from Triticum timopheevii . Theoretical and Applied Genetics 116: 417425.Google Scholar
Röder, MS, Korzun, V, Wendehake, K, Plaschke, J, Tixier, MH, Leroy, P and Ganal, MW (1998) A microsatellite map of wheat. Genetics 149: 20072023.Google Scholar
Schubert, V (1991) Untersuchungen zur genetischen Stabilität bei der Erstellung disomer Triticum aestivum - Aegilops markgrafii Additionslinien. Vorträge für Pflanzenzüchtung 19: 361366.Google Scholar
Schubert, V (2001) Die Sammlung und Charakterisierung pflanzlicher genetischer Ressourcen und ihre Nutzung im Rahmen der Züchtungsforschung bei Weizen. Dissertationes Botanicae. vol. 352. Berlin-Stuttgart: J. Cramer Verlagsbuchhandlung, 116 pp.Google Scholar
Weidner, A (2004) Selektion und Charakterisierung braunrostresistenter Weizen – Aegilops markgrafii – Introgressionslinien. PhD Thesis, Martin-Luther-University Halle-Wittenberg, Germany, 111 pp. Google Scholar
Yahiaoui, N, Strichumpa, P, Dudler, R and Keller, B (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance Pm3b from hexaploid wheat. Plant Journal 37: 528538.Google Scholar