Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-28T13:34:44.363Z Has data issue: false hasContentIssue false

Microsatellite fingerprinting in the International Cocoa Genebank, Trinidad: accession and plot homogeneity information for germplasm management

Published online by Cambridge University Press:  20 April 2011

Lambert A. Motilal*
Affiliation:
Cocoa Research Unit, The University of the West Indies, St. Augustine, Trinidad, Rep. Trinidad and Tobago, West Indies
Dapeng Zhang
Affiliation:
USDA/ARS, Beltsville Agricultural Research Center, PSI, SPCL, 10300 Baltimore Avenue, Bldg. 001, Rm. 223, BARC-W, Beltsville, MD20705, USA
Pathmanathan Umaharan
Affiliation:
Cocoa Research Unit, The University of the West Indies, St. Augustine, Trinidad, Rep. Trinidad and Tobago, West Indies
Sue Mischke
Affiliation:
USDA/ARS, Beltsville Agricultural Research Center, PSI, SPCL, 10300 Baltimore Avenue, Bldg. 001, Rm. 223, BARC-W, Beltsville, MD20705, USA
Stephen Pinney
Affiliation:
USDA/ARS, Beltsville Agricultural Research Center, PSI, SPCL, 10300 Baltimore Avenue, Bldg. 001, Rm. 223, BARC-W, Beltsville, MD20705, USA
Lyndel W. Meinhardt
Affiliation:
USDA/ARS, Beltsville Agricultural Research Center, PSI, SPCL, 10300 Baltimore Avenue, Bldg. 001, Rm. 223, BARC-W, Beltsville, MD20705, USA
*
*Corresponding author. E-mail: lamotilal@yahoo.com

Abstract

The International Cocoa Genebank, Trinidad, is the largest field genebank collection of cacao (Theobroma cacao L.) in the public domain and the correct identity of each tree is crucial for germplasm movement, evaluation and phenotypic characterization. Nine microsatellite loci were used to assess the identity of 1477 trees from 486 cacao accessions representing approximately 16.9% of the trees and 29.2% of the accessions within the genebank. Heterogeneous plots (plots containing more than one genotype group) averaged 25.1% in The International Cocoa Genebank, Trinidad, with maximal admixture (32.6%) being recorded in Field 5B. The error rate did not differ significantly among different fields. Mislabeling error could be affected by accession grouping with an average error rate of 27.4% for accession groups in the genebank. Synonymous accessions were estimated to account for 14.4% of the field genebank. The results of the present study provide essential information for the management and utilization of the germplasm collection. Single-tree genotyping of every tree in this collection is strongly recommended.

Type
Research Article
Copyright
Copyright © NIAB 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Badenes, M, Garcés, A, Romero, C, Romero, M, Clavé, J, Rovira, M and Llácer, G (2003) Genetic diversity of introduced and local Spanish persimmon cultivars revealed by RAPD markers. Genetic Resources and Crop Evolution 50: 579585. doi: 10.1023/A:1024474719036.CrossRefGoogle Scholar
Baric, S, Storti, A, Hofer, M and Dalla Via, J (2009) Molecular genetic characterisation of apple cultivars from different germplasm collections. Acta Horticulturae (ISHS) 817: 347354.CrossRefGoogle Scholar
Bartley, BGD (2005) The Genetic Diversity of Cacao and its Utilization. UK: CABI Publishing, 341 pp.CrossRefGoogle Scholar
Botstein, D, White, RL, Skolnick, M and Davis, RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics 32: 314331.Google ScholarPubMed
Chang, A (2001) Contingency table programs v3.0. Available at http://department.obg.cuhk.edu.hk/researchsupport/download/downloads.asp.Google Scholar
Christopher, Y, Mooleedhar, V, Bekele, F and Hosein, F (1999) Verification of accessions in the ICG,T using botanical descriptors and RAPD analysis. In: Annual Report 1998. St. Augustine, Trinidad: Cocoa Research Unit, The University of the West Indies, pp. 1518.Google Scholar
Cryer, NC, Fenn, MGE, Turnbull, CJ and Wilkinson, MJ (2006) Allelic size standards and reference genotypes to unify international cocoa (Theobroma cacao L.) microsatellite data. Genetic Resources and Crop Evolution 53: 16431652. doi: 10.1007/s10722-005-1286-9.CrossRefGoogle Scholar
Diederichsen, A (2009) Duplication assessments in Nordic Avena sativa accessions at the Canadian national genebank. Genetic Resources and Crop Evolution 56: 587597. doi: 10.1007/s10722-008-9388-9.CrossRefGoogle Scholar
Duval, M-F, Risterucci, A-M, Calabre, C, Le Bellec, F, Bunel, J and Sitbon, C (2009) Genetic diversity of Caribbean mangoes (Mangifera indica L.) using microsatellite markers. Acta Horticulturae (ISHS) 820: 183188.CrossRefGoogle Scholar
Figueira, A (1998) Homonymous genotypes and misidentification in germplasm collections of Brazil and Malaysia. INGENIC Newsletter 4: 48.Google Scholar
Hurka, H, Neuffer, B and Friesen, N (2004) Plant genetic resources in botanical gardens. In: Forkmann G and Michaelis S (eds) Proceedings of the 21st International Symposium on Breeding Ornamentals, Part II. Acta Horticulturae 651: 3544.CrossRefGoogle Scholar
Irish, BM, Goenaga, R, Zhang, D, Schnell, R, Brown, JS and Motamayor, JC (2010) Microsatellite fingerprinting of the USDA-ARS Tropical Agriculture Research Station cacao (Theobroma cacao L.) germplasm collection. Crop Science 50: 656667. doi: 10.2135/cropsci2009.06.0299.CrossRefGoogle Scholar
Iwaro, AD, Bekele, FL and Butler, DR (2003) Evaluation and utilisation of cacao (Theobroma cacao L.) germplasm at the International Cocoa Genebank, Trinidad. Euphytica 130: 207221.CrossRefGoogle Scholar
Johnson, ES, Bekele, FL, Brown, SJ, Song, Q, Zhang, D, Meinhardt, LW and Schnell, RJ (2009) Population structure and genetic diversity of the Trinitario cacao (Theobroma cacao L.) from Trinidad and Tobago. Crop Science 49: 564572. doi: 10.2135/cropsci2008.03.0128.CrossRefGoogle Scholar
Kalinowski, ST, Taper, ML and Marshall, TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology 16: 10991106. doi: 10.1111/j.1365-294X.2007.03089.x.CrossRefGoogle ScholarPubMed
Kennedy, AJ and Mooleedhar, V (1993) Conservation of cocoa in field genebanks – the International Cocoa Genebank, Trinidad. In: Proceedings of the International Workshop on Conservation, Characterisation and Utilisation of Cocoa Genetic Resources in the 21st Century, Port of Spain, Trinidad, September 13–17, 1992. Port of Spain, Trinidad: Cocoa Research Unit, The University of the West Indies, pp. 21–23.Google Scholar
Khadari, B, Breton, C, Moutier, N, Roger, JP, Besnard, G, Bervillé, A and Dosba, F (2003) The use of molecular markers for germplasm management in a French olive collection. Theoretical and Applied Genetics 106: 521529. doi: 10.1007/s00122-002-1079-x.CrossRefGoogle Scholar
Khadari, B, Oukabli, A, Ater, M, Mamouni, A, Roger, JP and Kjellberg, F (2005) Molecular characterization of Moroccan fig germplasm using intersimple sequence repeat and simple sequence repeat markers to establish a reference collection. HortScience 40: 2932.CrossRefGoogle Scholar
Kobayashi, N, Horikoshi, T, Katsuyama, H, Handa, T and Takayanagi, K (1998) A simple and efficient DNA extraction method for plants, especially woody plants. Plant Tissue Culture and Biotechnology 4: 7680.Google Scholar
Lanaud, C, Risterucci, AM, Pieretti, I, Falque, M, Bouet, A and Lagoda, PJL (1999) Isolation and characterization of microsatellites in Theobroma cacao L. Molecular Ecology 8: pp. 21412143. doi: 10.1046/j.1365-294x.1999.00802.x.CrossRefGoogle ScholarPubMed
Leão, PCS, Riaz, S, Graziani, R, Dangl, GS, Motoike, SY and Walker, MA (2009) Characterization of a Brazilian grape germplasm collection using microsatellite markers. American Journal of Enology and Viticulture 60: 517524.CrossRefGoogle Scholar
Motilal, LA (2005) Validation and optimisation of SSR-PCR and SSR detection in agarose gels. Annual Report for 2004. St. Augustine, Trinidad: Cocoa Research Unit, The University of the West Indies, pp. 1421.Google Scholar
Motilal, L and Butler, D (2003) Verification of identities in global cacao germplasm collections. Genetic Resources and Crop Evolution 50: 799807. doi: 10.1023/A:1025950902827.CrossRefGoogle Scholar
Motilal, LA, Zhang, D, Umaharan, P, Mischke, S, Boccara, M and Pinney, S (2009) Increasing accuracy and throughput in large-scale microsatellite fingerprinting of cacao field germplasm collections. Tropical Plant Biology 2: 2327. doi: 10.1007/s12042-008-9016-z.CrossRefGoogle Scholar
Noormohammadi, Z, Hosseini-Mazinani, M, Trujillo, I and Belaj, A (2009) Study of intracultural variation among main Iranian olive cultivars using SSR markers. Acta Biologica Szegediensis 53: 2732.Google Scholar
Park, SDE (2001) Trypanotolerance in West African cattle and the population genetic effects of selection. PhD Thesis, University of Dublin.Google Scholar
Pugh, T, Fouet, O, Risterucci, AM, Brottier, P, Abouladze, M, Deletrez, C, Courtois, B, Clement, D, Larmande, P, N'Goran, JAK and Lanaud, C (2004) A new cacao linkage map based on codominant markers: development and integration of 201 new microsatellite markers. Theoretical and Applied Genetics 108: 11511161. doi: 10.1007/s00122-003-1533-4.CrossRefGoogle ScholarPubMed
Risterucci, AM, Eskes, B, Fargeas, D, Motamayor, JC and Lanaud, C (2001) Use of microsatellite markers for germplasm identity analysis in cocoa In: Proceedings of the 3rd International Group for Genetic Improvement of Cocoa (INGENIC) International Workshop on the New Technologies and Cocoa Breeding. 16–17 October 2000, Kota Kinabalu, Malaysia, pp. 25–33.Google Scholar
Saunders, JA, Mischke, S, Leamy, EA and Hemeida, AA (2004) Selection of international molecular standard for DNA fingerprinting of Theobroma cacao. Theoretical and Applied Genetics 110: 4147. doi: 10.1007/s00122-004-1762-1.CrossRefGoogle ScholarPubMed
Shan, F, Clarke, HC, Plummer, JA, Yan, G and Siddique, KHM (2005) Geographical patterns of genetic variation in the world collections of wild annual Cicer characterized by amplified fragment length polymorphisms. Theoretical and Applied Genetics 110: 381391. doi: 10.1007/s00122-004-1849-8.CrossRefGoogle ScholarPubMed
Siegal, S and Castellan, NJ Jr (1988) Nonparametric Statistics for the Behavioral Sciences, 2nd edn. New York: McGraw Hill Book Company, pp. 190193.Google Scholar
Sokal, RR and Rohlf, FJ (1981) Biometry, the Principles and Practices of Statistics in Biological Research, 2nd edn. New York: Freeman & Company, 372 pp.Google Scholar
Sounigo, O, Christopher, Y, Bekele, F, Mooleedhar, V and Hosein, F (2001) The detection of mislabelled trees in the International Cocoa Genebank, Trinidad (ICG,T). In: Proceedings of the Third International Group for Genetic Improvement of Cocoa (INGENIC) International Workshop on the New Technologies and Cocoa Breeding, 16–17 October 2000, Kota Kinabalu, Malaysia, pp. 34-39.Google Scholar
Takrama, JF, Cervantes-Martinez, C, Phillips-Mora, W, Brown, JS, Motamayor, JC and Schnell, RJ (2005) Determination of off-types in a cocoa breeding programme using microsatellites. INGENIC Newsletter 10: 28.Google Scholar
Toxopeus, H (1985) Botany, types and populations. In: Wood, GAR and Lass, RA (eds) Cocoa, 4th edn. London: Longman Group Ltd, pp. 1137.Google Scholar
Turnbull, CJ, Butler, DR, Cryer, NC, Zhang, D, Lanaud, C, Daymond, AJ, Ford, CS, Wilkinson, MJ and Hadley, P (2004) Tackling mislabelling in cocoa germplasm collections. INGENIC Newsletter 9: 811.Google Scholar
Turnbull, CJ and Hadley, P (2011) International Cocoa Germplasm Database (ICGD) [Online database]. NYSE Liffe/CRA Ltd./University of Reading, UK. Available at http://www.icgd.reading.ac.uk (26th January, 2011).Google Scholar
Valière, N (2002) GIMLET: A computer program for analyzing genetic individual identification data. Molecular Ecology Notes 2: 377379. doi: 10.1046/j.1471-8286.2002.00228.x-i2.CrossRefGoogle Scholar
Van Hintum, TJL (2000) Duplication within and between germplasm collections. III. A quantitative model. Genetic Resources and Crop Evolution 47: 507513. doi: 10.1023/A:1008703031415.CrossRefGoogle Scholar
Van Hintum, TJL and Van Treuren, R (2002) Molecular markers: tools to improve genebank efficiency. Cellular and Molecular Biology Letters 7: 737744.Google ScholarPubMed
Waits, LP, Luikart, G and Taberlet, P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Molecular Ecology 10: 249256. doi: 10.1046/j.1365-294X.2001.01185.x.CrossRefGoogle ScholarPubMed
Wood, GAR and Lass, RA (1985) Cocoa, 4th edn. London: Longman Group Ltd, 620 pp.Google Scholar
Zhang, D, Mischke, S, Goenaga, R, Hemeida, AA and Saunders, JA (2006) Accuracy and reliability of high-throughput microsatellite genotyping for cacao clone identification. Crop Science 46: 20842092. doi: 10.2135/cropsci2006.01.0004.CrossRefGoogle Scholar
Zhang, D, Boccara, M, Motilal, L, Butler, DR, Umaharan, P, Mischke, S and Meinhardt, L (2008) Microsatellite variation and population structure in the “Refractario” cacao of Ecuador. Conservation Genetics 9: 327337. doi: 10.1007/s10592-007-9345-8.CrossRefGoogle Scholar
Zhang, D, Boccara, M, Motilal, L, Mischke, S, Johnson, ES, Butler, DR, Bailey, B and Meinhardt, L (2009a) Molecular characterization of an earliest cacao (Theobroma cacao L.) collection from Upper Amazon using microsatellite DNA markers. Tree Genetics and Genomes 5: 595607. doi: 10.1007/s11295-009-0212-2.CrossRefGoogle Scholar
Zhang, D, Mischke, S, Johnson, ES, Phillips-Mora, W and Meinhardt, L (2009b) Molecular characterization of an international cacao collection using microsatellite markers. Tree Genetics and Genomes 5: 110. doi: 10.1007/s11295-008-0163-z.CrossRefGoogle Scholar