Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-06T17:31:55.578Z Has data issue: false hasContentIssue false

Protein quality enhancement in temperate corn through introgression of o2o2 using marker assisted backcross and shuttle breeding

Published online by Cambridge University Press:  18 April 2024

Shamshir ul Hussan*
Affiliation:
Dryland Agricultural Research Station, Rangreth, SKUAST-Kashmir, Srinagar, India
Mohammad Ashraf Rather
Affiliation:
Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Sopore, Baramulla, India
Zahoor Ahmad Dar
Affiliation:
Dryland Agricultural Research Station, Rangreth, SKUAST-Kashmir, Srinagar, India
Munezeh Rashid
Affiliation:
Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Sopore, Baramulla, India
Azra Khan
Affiliation:
Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Sopore, Baramulla, India
Asif Bashir Shikari
Affiliation:
Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Sopore, Baramulla, India
Aflaq Hamid
Affiliation:
National Seed Project Laboratory, Faculty of Horticulture, SKUAST-Kashmir, Shalimar, Srinagar, India
Gowhar Ali
Affiliation:
National Seed Project Laboratory, Faculty of Horticulture, SKUAST-Kashmir, Shalimar, Srinagar, India
Mohd Altaf Wani
Affiliation:
Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Sopore, Baramulla, India
Ajaz Ahmad Lone
Affiliation:
Dryland Agricultural Research Station, Rangreth, SKUAST-Kashmir, Srinagar, India
Seerat un Nissa
Affiliation:
Dryland Agricultural Research Station, Rangreth, SKUAST-Kashmir, Srinagar, India
*
Corresponding author: Shamshir ul Hussan; Email: gpbshamshir@skuastkashmir.ac.in

Abstract

Quality protein maize (QPM) has protein quality of opaque 2 (>0.074% tryptopan) with endosperm modifiers which turn its kernels vitreous that is similar to normal maize. Use of QPM as a cereal can significantly improve daily intake of lysine and tryptophan for humans and livestock. However QPM cultivars have lower yields due to trait compensation. Therefore, a breeding programme was carried out to convert parental lines of Shalimar maize hybrid 5 (SMH-5) viz. IML-187 and BML-6 into QPM versions. Marker polymorphism was worked out in donors and recipients. IML-187 was crossed with DQL-2029-1 and BML-6 was crossed with DQL-779-2-9. The first and second backcross generations involving IML-187 as recurrent parent were marked as BC1F1 (A) and BC2F1 (A) respectively, whereas those involving BML-6 were designated as BC1F1 (B) and BC2F1 (B) respectively. The BC2F2 lines derived from two generation of backcrossing coupled with SSR marker and phenotypic background and foreground selection were advanced to BC2F3. Approximately 80–90% of RPG similarity was observed in BC2F2 lines. Eight lines namely IML-187 × DQL-2029-1- BC2F3:06, 07 and 23: BML-6 × DQl-779-2-9: 02,04,09,20 and 13 were identified from BC2F3 to have tryptophan higher than 0.075% and <25% opaqueness. These lines were used for trait fixing and crosses were made to produce QPM version of SMH-5. Six improved versions of SMH-5 were selected for higher grain yield and tryptophan content and are to be employed in further testing and varietal release in Northern Hill Zone (NHZ) in India.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of National Institute of Agricultural Botany

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ASH & FD, JK (Animal, Sheep Husbandry and Fisheries Department, Jammu and Kashmir, India) (2022) https://jkash.nic.in.Google Scholar
Babu, R, Nair, SK, Kumar, A, Venkatesh, S, Sekhar, JC and Singh, NN (2005) Two generation marker aided backcrossing for rapid conversion of normal maize lines to quality protein maize (QPM). Theoretical and Applied Genetics 111, 888897.CrossRefGoogle Scholar
Bantte, K and Prasanna, BM (2003) Simple sequence repeat polymorphism in quality protein maize (QPM) lines. Euphytica 129, 337344.CrossRefGoogle Scholar
Bjarnason, M and Vasal, S (1992) Breeding of quality protein maize (QPM). In Janick, J (ed.), Plant Breeding Reviews, Vol. 9. New York: John Wiley & Sons, Inc., p. 560.Google Scholar
Chandran, S, Pukalenthy, B, Adhimoolam, K, Manickam, D, Sampathrajan, V, Chocklingam, V, Eswaran, K, Arunachalam, K, Joikumar, ML, Rajasekaran, R, Muthusamy, V, Hossain, F and Natesan, S (2019) Marker-assisted selection to pyramid the Opaque-2 (O2) and β-Carotene (crtRB1) genes in maize. Frontiers in Genetics 10, 859.CrossRefGoogle ScholarPubMed
Cochran, WG and Cox, GM (1959) Experimental Designs, 2nd Edn. Hoboken, NJ: Wiley Classics Library, pp. 95105.Google Scholar
Danson, JW, Mbogori, M, Kimani, M, Lagat, M, Kuria, A and Diallo, A (2006) Marker assisted introgression of opaque2 gene into herbicide resistant elite maize inbred lines. African Journal of Biotechnology 5, 24172422.Google Scholar
Frisch, M and Melchinger, AE (2001) The length of the intact chromosome segment around a target gene in marker-assisted backcrossing. Genetics 157, 13431356.CrossRefGoogle ScholarPubMed
Frisch, M, Bohn, M and Melchinger, AE (1999) Comparison of selection strategies for marker assisted backcrossing of a gene. Crop Science 39, 12951301.CrossRefGoogle Scholar
Gupta, HS, Raman, B, Agrawal, PK, Mahajan, V, Hossain, F and Thirunavukkarasu, N (2013) Accelerated development of quality protein maize hybrid through marker-assisted introgression of opaque-2 allele. Plant Breeding 132, 7782.CrossRefGoogle Scholar
Hernandez, HH and Bates, LS (1969) A Modified Method for a Rapid Tryptophan Analysis in Maize, Vol. 13. Research Bulletin. Mexico City, Mexico: CIMMYT, p. 7.Google Scholar
Hospital, F (2001) Size of donor chromosome segments around introgressed loci and reduction of linkage drag in marker-assisted backcross programmes. Genetics 158, 13631379.CrossRefGoogle Scholar
Hospital, F, Chevalet, C and Mulsant, P (1992) Using markers in gene introgression programs. Genetics 32, 11991210.CrossRefGoogle Scholar
Hossain, F, Muthusamy, V, Pandey, N, Vishwakarma, AK, Baveja, A, Zunjare, RU, Thirunavukkarasu, N, Saha, S, Manjaiah, KM, Prasanna, BM and Gupta, HS (2018) Marker-assisted introgression of opaque2 allele for rapid conversion of elite hybrids into quality protein maize. Journal of Genetics 97, 287298. https://doi.org/10.1007/s12041-018-0914-z.CrossRefGoogle ScholarPubMed
Hossain, F, Jaiswal, SK, Muthusamy, V, Zunjare, RU, Mishra, SJ, Chand, G, Bhatt, V, Bhat, JS, Das, AK, Chauhan, HS and Gupta, HS (2023) Enhancement of nutritional quality in maize kernel through marker-assisted breeding for vte4, crtRB1, and opaque2 genes. Journal of Applied Genetics 64, 431443. https://doi.org/10.1007/s13353-023-00768-6.CrossRefGoogle ScholarPubMed
Jompuk, C, Cheuchart, P, Jompuk, P and Apisitwanich, S (2011) Improved tryptophan content in maize with Opaque-2 gene using marker assisted selection (MAS) in backcross and selfing generations. Kasetsart Journal of National Science 45, 666674.Google Scholar
Kostadinovic, MN, Nikolic, A, Ristic, D, Bozinovic, S, Melnik, OD, Micic, DI and Vancetovic, J (2019) Marker assisted backcross breeding in Maize Research Institute Zemun Polje. Selekcija I Semenarstvo 25, 4147.CrossRefGoogle Scholar
Krishna, MSR, Reddy, SS and Satyanarayana, SDV (2017) Marker-assisted breeding for introgression of opaque-2 allele into elite maize inbred line BML-7. Biotechnology 7, 165.Google ScholarPubMed
Kumar, TPJ, Rai, A, Singh, SK, Kumar, RR, Ahlawat, AK, Saini, S, Shukla, RB, Bedi, N and Singh, AM (2022) Development of near isogenic lines for grain softness through marker assisted backcross breeding in wheat. Journal of Plant Biochemistry and Biotechnology 31, 410420. https://doi.org/10.1007/s13562-021-00712-x.CrossRefGoogle Scholar
Lopes, MA and Larkins, BA (1995) Genetic analysis of opaque2 modifier gene activity in maize endosperm. Theoretical and Applied Genetics 91, 274281.CrossRefGoogle ScholarPubMed
Magulama, EE and Sales, EK (2009) Marker-assisted introgression of opaque 2 gene into elite maize inbred lines. USM R & D 17, 131135.Google Scholar
Manna, R, Okello, DK, Imanyhowa, J, Pixley, K and Edema, R (2005) Enhancing introgression of opaque-2 trait into elite maize lines using simple sequence repeats. African Crop Science Journal 13, 215226.Google Scholar
Pixley, KV and Bjarnason, MS (1993) Combining ability for yield and protein quality among modified-endosperm opaque-2 tropical maize inbreds. Crop Science 33, 12291234.CrossRefGoogle Scholar
Protection of Plant Varieties and Farmers' Rights Authority (PPVFRA) (2007) Guidelines for the conduct of test for Distinctiveness, Uniformity and Stability on maize (Zea mays L.), pp. 1–13. Available at https://plantauthority.gov.in/sites/default/files/gmaize.pdf.Google Scholar
Rajarathinam, P, Palanisamy, G, Ramakrishnan, P, Narayana, M and Alagirisamy, M (2023) Marker assisted backcross to introgress late leaf spot and rust resistance in groundnut (Arachis hypogaea L.). Molecular Biology Reports 50, 24112419. https://doi.org/10.1007/s11033-022-08234-y.CrossRefGoogle ScholarPubMed
Reyes-Valdés, MH (2000) A model for marker-based selection in gene introgression breeding programs. Crop Science 40, 9198.CrossRefGoogle Scholar
Sarika, K, Hossain, F, Muthusamy, V, Zunjare, RU, Baveja, A, Goswami, R, Bhat, JS, Saha, S and Gupta, HS (2018) Marker-assisted pyramiding of opaque2 and novel opaque16 genes for further enrichment of lysine and tryptophan in sub-tropical maize. Plant Science 272, 142152.CrossRefGoogle ScholarPubMed
Shetty, P, Sagare, DB, Surender, M and Reddy, SS (2020) Development of lysine and tryptophan rich maize (Zea mays) inbreds employing marker assisted backcross breeding. Plant Genetics 23, 100236.Google Scholar
Tessema, M, Gunaratna, NS, Donato, K, Cohen, JL, Connell, M, Belayneh, D, Brouwer, ID, Belachew, T and Groote, HD (2016) Translating the impact of quality protein maize into improved nutritional status for Ethiopian children: study protocol for a randomized controlled trial. BMC Nutrition 2, 54.CrossRefGoogle Scholar
Vasal, SK, Villegas, E, Bjarnason, M, Gelaw, B and Goertz, P (1980) Genetic modifiers and breeding strategies in developing hard endosperm opaque-2 materials. In Pollmer, WG and Phillips, RH (eds), Improvement of Quality Traits of Maize for Grain and Silage Use. London: Martinus Nijhoff, p. 3773.Google Scholar
Vasal, SK, Srinivasan, G, Pandey, S, González, F, Crossa, J and Beck, DL (1993) Heterosis and combining ability of CIMMYT's quality protein maize germplasm: I. Lowland tropical. Crop Science 33, 4651.CrossRefGoogle Scholar
Villegas, E (1964) Factors limiting quality protein maize (QPM) development and utilization. Quality Protein Maize 1994, 7988.Google Scholar
Villegas, E, Vasal, SK and Bjarnason, M (1992) Quality protein maize – what is it and how was it developed. In Mertz, ET (ed.), Quality Protein Maize. St Paul, MN: American Society of Cereal Chemistry, pp. 2748.Google Scholar
Vivek, BS, Krivanek, AF, Palacios-Rojas, N, Twumasi-Afriyie, S and Diallo, AO (2008) Breeding Quality Protein Maize (QPM): Protocols for Developing QPM Cultivars. Mexico, DF: CIMMYT.Google Scholar
Supplementary material: File

Hussan et al. supplementary material 1

Hussan et al. supplementary material
Download Hussan et al. supplementary material 1(File)
File 2.5 MB
Supplementary material: File

Hussan et al. supplementary material 2

Hussan et al. supplementary material
Download Hussan et al. supplementary material 2(File)
File 34 KB