Skip to main content Accessibility help

Variation in south Asian wheat germplasm for seedling drought tolerance traits

  • Umesh R. Rosyara (a1) (a2), Amrit A. Ghimire (a1), Sushil Subedi (a1) and Ram C. Sharma (a3)

Higher seedling vigour and greater coleoptile length are important for early establishment of wheat crops and subsequently higher grain yield in many dry environments. Seedling vigour includes those seed properties that determine the potential for rapid, uniform emergence and development of normal seedlings under a wide range of field conditions. Genotypes with the widely used gibberellic acid (GA)-insensitive dwarfing genes Rht-B1b and Rht-D1b have good partitioning and grain yield under optimal conditions, but may perform poorly under stressed conditions due to poor crop establishment. Breeding programmes are in search of GA-sensitive dwarfing genes that do not affect seedling vigour under dry conditions. This study evaluated 40 genotypes currently used in wheat breeding programmes of south Asia for seedling vigour-related traits in greenhouse and field experiments during 2006–2007 at IAAS, Rampur, Nepal. Wide variation in coleoptile length, seedling vigour, as well as sensitivity to GA was observed. Among the genotypes studied, there were positive correlations among coleoptile length, leaf width and plant height. Genotypes, SW89-5193, SW89-5422/NL251 and SW89-5422, were found to have longer coleoptile, higher seedling vigour and response to GA application. This shows a promise for their further applications in the breeding programmes.

Corresponding author
*Corresponding author. E-mail:
Hide All
Anderson, TW and Darling, DA (1952) Asymptotic theory of certain goodness-of-fit criteria based on stochastic processes. Annals of Mathematical Statistics 23: 193212.
Ellis, MH, Rebetzke, GJ, Chandler, P, Bonnett, DG, Spielmeyer, W and Richards, RA (2004) The effect of different height reducing genes on the early growth of wheat. Functional Plant Biology 31: 583589.
Ellis, MH, Bonnett, DG and Rebetzke, GJ (2007) A 192 bp allele at the XGWM261 locus is not always diagnostic for the Rht8 dwarfing gene in wheat (Triticum aestivum L.). Euphytica 157: 209214.
Hakizimana, F, Haley, SD and Turnipseed, EB (2000) Repeatability and genotype × environment interaction of coleoptile length measurements in winter wheat. Crop Science 40: 12331237.
Karssen, CM, Zagorski, S, Kepczynski, J and Groot, SPC (1989) Key role for endogenous gibberellins in the control of seed germination. Annals of Botany (London) 63: 7180.
Keyes, GJ, Paolillo, DJ and Sorrells, ME (1989) The effects of dwarfing genes Rht1 and Rht2 on cellular dimensions and rate of leaf elongation in wheat. Annals of Botany 64: 683690.
Matsui, T, Inanaga, S, Shimotashiro, T, An, P and Sugimoto, Y (2002) Morphological characters related to varietal differences in tolerance to deep sowing in wheat. Plant Production Science 5: 169174.
MINITAB(1996) MINITAB for Windows. State College, PA: Minitab, Inc.
Pereira, MJ, Pfahler, PL, Barnett, RD, Blount, AR, Wofford, DS and Littell, RC (2002) Coleoptile length of dwarf wheat isolines: gibberellic acid, temperature, and cultivar interactions. Crop Science 42: 14831487.
Pinthus, MJ and Abraham, M (1996) Effects of light, temperature, gibberellin (GA5) and their interaction on coleoptile and leaf elongation of tall, semi-dwarf and dwarf wheat. Plant Growth Regulation 18: 239247.
Rebetzke, GJ and Richards, RA (1999) Genetic improvement of early vigour in wheat. Australian Journal of Agricultural Research 50: 291301.
Rebetzke, GJ and Richards, RA (2000) Gibberellic acid-sensitive dwarfing genes reduce plant height to increase seed number and grain yield of wheat. Australian Journal of Agricultural Research 51: 235245.
Rebetzke, GJ, Richards, RA, Fischer, VM and Mickelson, BJ (1999) Breeding long coleoptile, reduced height wheat. Euphytica 106: 159168.
Rebetzke, GJ, Richards, RA, Fettell, NA, Long, M, Condon, AG, Forrester, RI and Botwright, TL (2007) Genotypic increases in coleoptile length improves stand establishment, vigour and grain yield of deep-sown wheat. Field Crops Research 100: 1023.
Richards, RA and Lukacs, Z (2001) Seedling vigor in wheat–source of variation for genetic and agronomic improvement. Australian Journal of Agricultural Research 53: 4150.
Rosyara, UR and Joshi, BK (2005) Genetic base of wheat cultivars recommended in Nepal. Nepal Agriculture Research Journal 6: 19.
Steel, R and Torrie, JH (1980) Principles and Procedures of Statistics: A Biometrical Approach. 2nd ed., New York: McGraw-HIll, p. 176.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Plant Genetic Resources
  • ISSN: 1479-2621
  • EISSN: 1479-263X
  • URL: /core/journals/plant-genetic-resources
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed