Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-05T07:21:35.831Z Has data issue: false hasContentIssue false

Widening the Arachis hypogaea seed chemical composition: the case of a recombinant inbred lines introgressed with genes from three different wild species

Published online by Cambridge University Press:  18 April 2024

Francisco de Blas*
Affiliation:
Universidad Nacional del Nordeste (CONICET) y Consejo Nacional de Investigaciones en Ciencia y Tecnología (UNNE), Instituto de Botánica del Nordeste (IBONE), Sargento Juan Bautista Cabral 2131 3402BKG Corrientes, Argentina Departamento de fundamentación biológica, Universidad Nacional de Córdoba, Facultad de Ciencias Agropecuarias (FCA – UNC), Genética, Av. Ing. Agr. Félix A. Marrone 735, CP5001, Córdoba, Argentina
José Guillermo Seijo
Affiliation:
Universidad Nacional del Nordeste (CONICET) y Consejo Nacional de Investigaciones en Ciencia y Tecnología (UNNE), Instituto de Botánica del Nordeste (IBONE), Sargento Juan Bautista Cabral 2131 3402BKG Corrientes, Argentina Universidad Nacional del Nordeste (UNNE) – Facultad de Ciencias Exactas y Naturales y Agrimensura, Av. Libertad 5460, Corrientes, Argentina
Beatriz Del Pilar Costero
Affiliation:
Departamento de fundamentación biológica, Universidad Nacional de Córdoba, Facultad de Ciencias Agropecuarias (FCA – UNC), Genética, Av. Ing. Agr. Félix A. Marrone 735, CP5001, Córdoba, Argentina
Marina Bressano
Affiliation:
Universidad Nacional de Córdoba, Facultad de Ciencias Agropecuarias, Av. Ing. Agr. Félix A. Marrone 746, CP 5000, Córdoba, Argentina
Mariana Marchesino
Affiliation:
Universidad Nacional de Córdoba, Facultad de Ciencias Agropecuarias, Av. Ing. Agr. Félix A. Marrone 746, CP 5000, Córdoba, Argentina Universidad Nacional de Córdoba – Secretaría de Ciencia y Tecnología, Instituto de Ciencia y Tecnología de Alimentos Córdoba (CONICET-UNC), Av. Filloy S/N, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
Nelson Rubén Grosso
Affiliation:
Universidad Nacional de Córdoba, Facultad de Ciencias Agropecuarias, Av. Ing. Agr. Félix A. Marrone 746, CP 5000, Córdoba, Argentina Universidad Nacional de Córdoba – UNC y Consejo Nacional de Investigaciones en Ciencia y Tecnología (CONICET), Instituto Multidisciplinario de Biología Vegetal (IMBIV), Av. Vélez Sarsfield 1666, X5016GCN Córdoba, Argentina
*
Corresponding author: Francisco de Blas; Email: frandeblas@unc.edu.ar

Abstract

Peanut (Arachis hypogaea L.) is an important row crop rich in oil, protein, vitamins and other micro-nutrients. The intensive selection of the cultigen, a cultivated plant deliberately altered by humans through cultivation, has resulted in favourable changes in yield and biochemical composition. Nevertheless, it has generated a narrow genetic basis that limits the development of new varieties with resistance to pests, diseases and environmental stresses. In this study, we address this limitation by characterizing the proximate and fatty acid composition of a multi-disease-resistant interspecific recombinant inbred line (RIL) population derived from three wild Arachis species and a cultivated elite peanut line that is being used to widen the genetic basis of the crop. The population was also genotyped with the Axiom Arachis 48K SNP array and used to detect quantitative trait loci (QTL) for oil, protein content and oleic and linoleic fatty acid percentages. A wide range of proximate composition was found in the RIL population. Eighteen and 11 individuals had high oil and protein content, respectively, and no undesirable traits related to oil quality had been introduced into the population from wild species. The fatty acid composition of oleic and linoleic acids was found to be regulated by two major QTL. The discovery of markers within the major effect QTL for the most significant chemical traits provides new opportunities for the creation of resistant and extremely nutrient-dense peanut cultivars.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of National Institute of Agricultural Botany

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, E and Young, C (1982) Composition, nutrition and flavor of peanut. In: Pattee H, Young C (eds). Peanut Science; Technology, American Peanut Research; Education Society, Inc., 2360 Rainwater Road UGA/NESPAL Building Tifton, GA 31793, pp. 655687. https://doi.org/10.1016/B978-1-63067-038-2.00011-3CrossRefGoogle Scholar
Ahmed, EM and Ali, T (1986) Textural quality of peanut butter as influenced by peanut seed and oil contents. Peanut Science 13, 1820.CrossRefGoogle Scholar
Andersen, PC and Gorbet, DW (2002) Influence of year and planting date on fatty acid chemistry of high oleic acid and normal peanut genotypes. Journal of Agricultural and Food Chemistry 50, 12981305.CrossRefGoogle ScholarPubMed
Anderson, W and Harvey, J (2006) Registration of ‘AT 3081R’ peanut. Crop Science 46, 467468.CrossRefGoogle Scholar
Anderson, W, Holbrook, C and Timper, P (2006) Registration of root-knot nematode resistant peanut germplasm lines NR 0812 and NR 0817. Crop Science 46, 481483.CrossRefGoogle Scholar
Arya, SS, Salve, AR and Chauhan, S (2016) Peanuts as functional food: a review. Journal of Food Science and Technology 53, 3134.CrossRefGoogle ScholarPubMed
Ballén-Taborda, C, Chu, Y, Ozias-Akins, P, Holbrook, CC, Timper, P, Jackson, SA, Bertioli, DJ and Leal-Bertioli, SCM (2022) Development and genetic characterization of peanut advanced backcross lines that incorporate root-knot nematode resistance from Arachis stenosperma. Frontiers in Plant Science 12, 785358.CrossRefGoogle ScholarPubMed
Bertioli, DJ, Jenkins, J, Clevenger, J, Dudchenko, O, Gao, D, Seijo, G, Leal-Bertioli, CMS, Ren, L, Farmer, A, Pandey, M, Samoluk, S, Abernathy, B, Agarwal, G, Ballén-Taborda, C, Cameron, C, Campbell, J, Chavarro, C, Chitikineni, A, Chu, Y, Dash, S, El Baidouri, M, Guo, B, Huang, W, Kim, K, Korani, W, Lanciano, S, Lui, C, Mirouze, M, Moretzsohn, M, Pham, M, Shin, J, Shirasawa, K, Sinharoy, S, Sreedasyam, A, Weeks, N, Zhang, X, Zheng, Z, Sun, Z, Froenicke, L, Aiden, E, Michelmore, R, Varshney, R, Holbrook, C, Cannon, E, Scheffler, B, Grimwood, J, Ozias-Akins, P, Cannon, S, Jackson, S and Schmutz, J (2019) The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nature Genetics 51, 877884.CrossRefGoogle ScholarPubMed
Bertioli, DJ, Abernathy, B, Seijo, G, Clevenger, J and Cannon, S (2020) Evaluating two different models of peanut's origin. Nature Genetics 52, 557559.CrossRefGoogle ScholarPubMed
Bianchi-Hall, C, Keys, R, Stalker, H and Murphy, J (1993) Diversity of seed storage protein patterns in wild peanut (Arachis, fabaceae) species. Plant Systematics and Evolution 186, 115.CrossRefGoogle Scholar
Bolton, G and Sanders, T (2002) Effect of roasting oil composition on the stability of roasted high-oleic peanuts. Journal of the American Oil Chemists’ Society 79, 129132.CrossRefGoogle Scholar
Bonku, R and Yu, J (2020) Health aspects of peanuts as an outcome of its chemical composition. Food Science and Human Wellness 9, 2130.CrossRefGoogle Scholar
Bouchet, AS, Nesi, N, Bissuel, C, Bregeon, M, Lariepe, A, Navier, H, Ribière, N, Grezes-Besset, B, Renard, M and Laperche, A (2014) Genetic control of yield and yield components in winter oilseed rape (Brassica napus L.) grown under nitrogen limitation. Euphytica 199, 183205.CrossRefGoogle Scholar
Branch, W, Nakayama, T and Chinnan, M (1990) Fatty acid variation among US runner-type peanut cultivars. Journal of the American Oil Chemists’ Society 67, 591593.CrossRefGoogle Scholar
Broman, KW and Sen, S (2009) A Guide to QTL Mapping with r/qtl. New York: Springer.CrossRefGoogle Scholar
Broman, KW, Wu, H, Sen, Ś and Churchill, GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics (Oxford, England) 19, 889890.Google ScholarPubMed
CAM-Cámara Argentina del Maní (2019) The Argentine Peanut Cluster. Available at https://www.camaradelmani.org.ar/english/Google Scholar
Chen, Z, Wang, ML, Barkley, NA and Pittman, RN (2010) A simple allele-specific PCR assay for detecting FAD2 alleles in both a and b genomes of the cultivated peanut for high-oleate trait selection. Plant Molecular Biology Reporter 28, 542548.CrossRefGoogle Scholar
Cheng, J-H, Jin, H and Liu, Z (2018) Developing a NIR multispectral imaging for prediction and visualization of peanut protein content using variable selection algorithms. Infrared Physics & Technology 88, 9296.CrossRefGoogle Scholar
Chu, Y, Holbrook, C and Ozias-Akins, P (2009) Two alleles of ahFAD2B control the high oleic acid trait in cultivated peanut. Crop Science 49, 1. doi: 10.2135/cropsci2009.01.0021CrossRefGoogle Scholar
Chung, J, Babka, HL, Graef, GL, Staswick, PE, Lee, DJ, Cregan, PB, Shoemaker, RC and Specht, JE (2003) The seed protein, oil, and yield QTL on soybean linkage group I. Crop Science 43, 10531067.CrossRefGoogle Scholar
Clevenger, JP, Korani, W, Ozias-Akins, P and Jackson, S (2018) Haplotype-based genotyping in polyploids. Frontiers in Plant Science 9, 564.CrossRefGoogle ScholarPubMed
Davis, JP, Price, K, Dean, LL, Sweigart, DS, Cottonaro, J and Sanders, TH (2016) ) Peanut oil stability and physical properties across a range of industrially relevant oleic acid/linoleic acid ratios. Peanut Science 43, 126.CrossRefGoogle Scholar
de Blas, FJ, Bressano, M, Teich, I, Balzarini, MG, Arias, RS, Manifesto, M, Costero, B, Oddino, CM, Soave, SJ, Soave, JH, Buteler, M, Massa, AN and Seijo, JG (2019) Identification of smut resistance in wild Arachis species and its introgression into peanut elite lines. Crop Science 59, 16571665.CrossRefGoogle Scholar
de Blas, FJ, Bruno, CI, Arias, RS, Ballén-Taborda, C, Mamani, E, Oddino, CM, Rosso, M, Costero, BP, Bressano, M, Soave, JH, Soave, SJ, Buteler, MI, Seijo, JG and Massa, AN (2021) Genetic mapping and QTL analysis for peanut smut resistance. BMC plant biology 21, 115.CrossRefGoogle ScholarPubMed
Diaz-Garcia, L, Covarrubias-Pazaran, G, Schlautman, B and Zalapa, J (2017) SOFIA: an r package for enhancing genetic visualization with circos. Journal of Heredity 108, 443448.CrossRefGoogle Scholar
Dwivedi, S, Nigam, S and Rao, RN (2000) Photoperiod effects on seed quality traits in peanut. Crop Science 40, 12231227.CrossRefGoogle Scholar
Eskandari, M, Cober, ER and Rajcan, I (2013) Genetic control of soybean seed oil: I. QTL and genes associated with seed oil concentration in RIL populations derived from crossing moderately high-oil parents. Theoretical and Applied Genetics 126, 483495.CrossRefGoogle ScholarPubMed
FAOSTAT (2019) Food and agriculture organization of the United Nations-statistic division. Available at https://www.FAO.Org/faostat/en/#dataGoogle Scholar
Fávero, AP, Simpson, CE, Valls, JF and Vello, NA (2006) Study of the evolution of cultivated peanut through crossability studies among Arachis ipaënsis, A. duranensis, and A. hypogaea. Crop Science 46, 15461552.CrossRefGoogle Scholar
Gao, D, Araujo, AC, Nascimento, EFMB, Chavarro, MC, Xia, H, Jackson, SA, Bertioli, DJ and Leal-Bertioli, SCM (2021) ValSten: a new wild species derived allotetraploid for increasing genetic diversity of the peanut crop (Arachis hypogaea L.). Genetic Resources and Crop Evolution 68, 14711485.CrossRefGoogle Scholar
García, AV, Ortiz, AM, Silvestri, MC, Custodio, AR, Moretzsohn, MC and Lavia, GI (2020) Occurrence of 2n microspore production in diploid interspecific hybrids between the wild parental species of peanut (Arachis hypogaea L., Leguminosae) and its relevance in the genetic origin of the cultigen. Crop Science 60, 24202436.CrossRefGoogle Scholar
Grabiele, M, Chalup, L, Robledo, G and Seijo, G (2012) Genetic and geographic origin of domesticated peanut as evidenced by 5S rDNA and chloroplast DNA sequences. Plant Systematics and Evolution 298, 11511165.CrossRefGoogle Scholar
Grami, B, Stefansson, B and Baker, R (1977) Genetics of protein and oil content in summer rape: heritability, number of effective factors, and correlations. Canadian Journal of Plant Science 57, 937943.CrossRefGoogle Scholar
Grosso, N, Lamarque, A, Maestri, D, Zygadlo, J and Guzmán, CA (1994) Fatty acid variation of runner peanut (Arachis hypogaea L.) among geographic localities from Córdoba (Argentina). Journal of the American Oil Chemists’ Society 71, 541542.CrossRefGoogle Scholar
Grosso, NR, Nepote, V and Guzmán, CA (2000) Chemical composition of some wild peanut species (Arachis L.) seeds. Journal of Agricultural and Food Chemistry 48, 806809.CrossRefGoogle ScholarPubMed
Halward, TM, Stalker, HT, Larue, EA and Kochert, G (1991) Genetic variation detectable with molecular markers among unadapted germplasm resources of cultivated peanut and related wild species. Genome 34, 10131020.CrossRefGoogle Scholar
Halward, T, Stalker, T, LaRue, E and Kochert, G (1992) Use of single-primer DNA amplifications in genetic studies of peanut (Arachis hypogaea L.). Plant Molecular Biology 18, 315325.CrossRefGoogle ScholarPubMed
Hashim, I, Koehler, P, Eitenmiller, R and Kvien, C (1993) Fatty acid composition and tocopherol content of drought stressed florunner peanuts. Peanut Science 20, 2124.CrossRefGoogle Scholar
Holbrook, CC and Stalker, HT (2003) Peanut breeding and genetic resources. Plant Breeding Reviews 22, 297356.Google Scholar
Holbrook, C, Brenneman, TB, Thomas Stalker, H, Johnson III, WC, Ozias-Akins, P, Chu, Y, Vellidis, G and McClusky, D (2014) Peanut. Yield Gains in Major US Field Crops 33, 173194.Google Scholar
Hu, X, Zhang, S, Miao, H, Cui, FG, Shen, Y, Yang, WQ, Xu, TT, Chen, N, Chi, XY, Zhang, ZM and Chen, J (2018) High-density genetic map construction and identification of QTLs controlling oleic and linoleic acid in peanut using SLAF-seq and SSRs. Scientific reports 8, 110.Google ScholarPubMed
Hwang, E-Y, Song, Q, Jia, G, Specht, JE, Hyten, DL, Costa, J and Cregan, PB (2014) A genome-wide association study of seed protein and oil content in soybean. BMC Genomics 15, 112.CrossRefGoogle ScholarPubMed
Isleib, T, Holbrook, C and Gorbet, D (2001) Use of plant introductions in peanut cultivar development. Peanut Science 28, 96113.CrossRefGoogle Scholar
Isleib, T, Tillman, B, Pattee, H, Sanders, TH, Hendrix, KW and Dean, LO (2008) Genotype-by-environment interactions for seed composition traits of breeding lines in the uniform peanut performance test. Peanut Science 35, 130138. doi: 10.3146/PS08-001.1CrossRefGoogle Scholar
Jasinski, S, Lécureuil, A, Durandet, M, Bernard-Moulin, P and Guerche, P (2016) Arabidopsis seed content QTL mapping using high-throughput phenotyping: the assets of near infrared spectroscopy. Frontiers in Plant Science 7, 1682.CrossRefGoogle ScholarPubMed
Jasinski, S, Chardon, F, Nesi, N, Lécureuil, A and Guerche, P (2018) Improving seed oil and protein content in Brassicaceae: some new genetic insights from Arabidopsis thaliana. OCL 25, D603.CrossRefGoogle Scholar
Jelihovschi, EG, Faria, JC and Allaman, IB (2014) ScottKnott: a package for performing the scott-knott clustering algorithm in R. TEMA (São Carlos) 15, 317.CrossRefGoogle Scholar
Jha, UC, Nayyar, H, Parida, SK, Deshmukh, R, von Wettberg, EJB and Siddique, KHM (2022) Ensuring global food security by improving protein content in major grain legumes using breeding and ‘Omics’ tools. International Journal of Molecular Sciences 23, 7710.CrossRefGoogle ScholarPubMed
Jonnala, RS, Dunford, NT and Dashiell, KE (2005) New high-oleic peanut cultivars grown in the southwestern United States. Journal of the American Oil Chemists’ Society 82, 125128.CrossRefGoogle Scholar
Kumar, D and Kirti, PB (2023) The genus Arachis: an excellent resource for studies on differential gene expression for stress tolerance. Frontiers in Plant Science 14, 2. https://doi.org/10.3389/fpls.2023.1275854CrossRefGoogle ScholarPubMed
Li, WP, Shi, HB, Zhu, K, Zheng, Q and Xu, Z (2017) The quality of sunflower seed oil changes in response to nitrogen fertilizer. Agronomy Journal 109, 24992507.CrossRefGoogle Scholar
Li, W, Yoo, E, Lee, S, Sung, J, Noh, HJ, Hwang, SJ, Desta, KT and Lee, GA (2022) Seed weight and genotype influence the total oil content and fatty acid composition of peanut seeds. Foods (Basel, Switzerland) 11, 3463.Google ScholarPubMed
Lintas, C and Cappelloni, M (1992) Dietary fibre content of Italian fruit and nuts. Journal of Food Composition and Analysis 5, 146151.CrossRefGoogle Scholar
Mallikarjuna, N and Varshney, RK (2014) Genetics, Genomics and Breeding of Peanuts. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
Martín, MP, Grosso, AL, Nepote, V and Grosso, NR (2018) Sensory and chemical stabilities of high-oleic and normal-oleic peanuts in shell during long-term storage. Journal of Food Science 83, 23622368.CrossRefGoogle ScholarPubMed
Moore, K and Knauft, D (1989) The inheritance of high oleic acid in peanut. Journal of Heredity 80, 252253.CrossRefGoogle Scholar
Moretzsohn, MC, Gouvea, EG, Inglis, PW, Leal-Bertioli, SCM, Valls, JFM and Bertioli, DJ (2013) A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers. Annals of Botany 111, 113126.CrossRefGoogle ScholarPubMed
Nichols, D, Glover, K, Carlson, S, Specht, JE and Diers, BW (2006) Fine mapping of a seed protein QTL on soybean linkage group I and its correlated effects on agronomic traits. Crop Science 46, 834839.CrossRefGoogle Scholar
Norden, A, Gorbet, D, Knauft, D and Young, C (1987) Variability in oil quality among peanut genotypes in the Florida breeding program. Peanut Science 14, 711.CrossRefGoogle Scholar
O'Byrne, DJ, Knauft, DA and Shireman, RB (1997) Low fat-monounsaturated rich diets containing high-oleic peanuts improve serum lipoprotein profiles. Lipids 32, 687695.CrossRefGoogle ScholarPubMed
O'Keefe, S, Wiley, V and Knauft, D (1993) Comparison of oxidative stability of high-and normal-oleic peanut oils. Journal of the American Oil Chemists’ Society 70, 489492.CrossRefGoogle Scholar
Pandey, MK, Monyo, E, Ozias-Akins, P, Liang, X, Guimarães, P, Nigam, SN, Upadhyaya, HD, Janila, P, Zhang, X, Guo, B, Cook, DR, Bertioli, DJ, Michelmore, R and Varshney, RK (2012) Advances in Arachis genomics for peanut improvement. Biotechnology Advances 30, 639651.CrossRefGoogle ScholarPubMed
Pandey, MK, Wang, ML, Qiao, L, Feng, S, Khera, P, Wang, H, Tonnis, B, Barkley, NA, Wang, J, Holbrook, CC, Culbreath, AK, Varshney, RK and Guo, B (2014) Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L). BMC genetics 15, 114.CrossRefGoogle ScholarPubMed
Pasupuleti, J, Nigam, S, Pandey, MK, Nagesh, P and Varshney, RK (2013) Groundnut improvement: use of genetic and genomic tools. Frontiers in Plant Science 4, 23.Google Scholar
Peng, Z, Ruan, J, Tian, H, Shan, L, Meng, J, Guo, F, Zhimeng, Z, Hong, D, Wan, S and Li, X (2020) The family of peanut fatty acid desaturase genes and a functional analysis of four −3 AhFAD3 members. Plant Molecular Biology Reporter 38, 209221.CrossRefGoogle Scholar
R Core Team (2020) R: A Language and Environment for Statistical Computing. Vienna, Austria: R foundation for statistical computing, 201.Google Scholar
Ren, X, Jiang, H, Yan, Z, Chen, Y, Zhou, X, Lei, Y, Huang, J, Yan, L, Qi, Y, Wei, W and Liao, B (2014) Genetic diversity and population structure of the major peanut (Arachis hypogaea L.) cultivars grown in China by SSR markers. PLoS One 9, e88091.CrossRefGoogle Scholar
Rieseberg, LH, Archer, MA and Wayne, RK (1999) Transgressive segregation, adaptation and speciation. Heredity 83, 363372.CrossRefGoogle ScholarPubMed
Rosso, MH, de Blas, FJ, Massa, AN, Oddino, C, Giordano, DF, Seijo, JG, Arias, RS, Soave, JH, Soave, SJ, Buteler, MI and Bressano, M (2023) Two QTLs govern the resistance to Sclerotinia minor in an interspecific peanut RIL population. Crop Science 63, 613621.CrossRefGoogle Scholar
Sarvamangala, C, Gowda, MVC and Varshney, RK (2011) Identification of quantitative trait loci for protein content, oil content and oil quality for groundnut (Arachis hypogaea L.). Field Crops Research 122, 4959.CrossRefGoogle Scholar
Scott, AJ and Knott, M (1974) A cluster analysis method for grouping means in the analysis of variance. Biometrics 30, 507512. https://doi.org/10.2307/2529204CrossRefGoogle Scholar
Seijo, JG, Lavia, GI, Fernández, A, Krapovickas, A, Ducasse, D and Moscone, EA (2004) Physical mapping of the 5S and 18S–25S rRNA genes by FISH as evidence that Arachis duranensis and A. ipaensis are the wild diploid progenitors of A. hypogaea (leguminosae). American Journal of Botany 91, 12941303.CrossRefGoogle Scholar
Seijo, JG, Lavia, GI, Fernández, A, Krapovickas, A, Ducasse, DA, Bertioli, DJ and Moscone, EA (2007) Genomic relationships between the cultivated peanut (Arachis hypogaea, leguminosae) and its close relatives revealed by double GISH. American Journal of Botany 94, 19631971.CrossRefGoogle ScholarPubMed
Settaluri, V, Kandala, C, Puppala, N and Sundaram, J (2012) Peanuts and their nutritional aspects – a review. doi: 10.4236/fns.2012.312215CrossRefGoogle Scholar
Simpson, CE (1991) Pathways for introgression of pest resistance into Arachis hypogaea L. Peanut Science 18, 2226.CrossRefGoogle Scholar
Simpson, C and Starr, J (2001) Registration of COAN’ peanut. Crop Science 41, 918918.CrossRefGoogle Scholar
Sithole, TR, Ma, YX, Qin, Z, Liu, HM and Wang, XD (2022) Influence of peanut varieties on the sensory quality of peanut butter. Foods (Basel, Switzerland) 11, 3499.Google ScholarPubMed
Stalker, H (1997) Peanut (Arachis hypogaea L.). Field Crops Research 53, 205217.CrossRefGoogle Scholar
Stalker, HT (2017) Utilizing wild species for peanut improvement. Crop Science 57, 11021120.CrossRefGoogle Scholar
Stalker, H and Moss, J (1987) Speciation, cytogenetics, and utilization of Arachis species. Advances in Agronomy 41, 140.CrossRefGoogle Scholar
Suárez-Ruiz, I and Ward, CR (2008) Basic factors controlling coal quality and technological behavior of coal. Applied Coal Petrology. Amsterdam: Elsevier, pp. 1959. https://doi.org/10.1016/B978-0-08-045051-3.00002-6CrossRefGoogle Scholar
Tai, YP and Young, CT (1975) Genetic studies of peanut proteins and oils. Journal of the American Oil Chemists’ Society 52, 377385.CrossRefGoogle Scholar
Tang, Y, Qiu, X, Hu, C, Li, J, Wu, L, Wang, W, Li, X, Li, X, Zhu, H, Sui, J, Wang, J and Qiao, L (2022) Breeding of a new variety of peanut with high-oleic-acid content and high-yield by marker-assisted backcrossing. Molecular Breeding: New Strategies in Plant Improvement 42, 42.CrossRefGoogle ScholarPubMed
Ward, JH Jr (1963) Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58, 236244.CrossRefGoogle Scholar
Supplementary material: File

de Blas et al. supplementary material 1

de Blas et al. supplementary material
Download de Blas et al. supplementary material 1(File)
File 13.4 KB
Supplementary material: File

de Blas et al. supplementary material 2

de Blas et al. supplementary material
Download de Blas et al. supplementary material 2(File)
File 42.4 KB
Supplementary material: File

de Blas et al. supplementary material 3

de Blas et al. supplementary material
Download de Blas et al. supplementary material 3(File)
File 111.4 KB
Supplementary material: File

de Blas et al. supplementary material 4

de Blas et al. supplementary material
Download de Blas et al. supplementary material 4(File)
File 49.4 KB