Skip to main content
    • Aa
    • Aa

Glacier displacement on Comfortlessbreen, Svalbard, using 2-pass differential SAR interferometry (DInSAR) with a digital elevation model

  • Nora Jennifer Schneevoigt (a1), Monica Sund (a1), Wiley Bogren (a1), Andreas Kääb (a1) and Dan Johan Weydahl (a2)...

Differential synthetic aperture radar interferometry (DInSAR) exploits the coherence between the phases of two or more satellite synthetic aperture radar (SAR) scenes taken from the same orbit to separate the phase contributions from topography and movement by subtracting either phase. Hence pure terrain displacement can be derived without residual height information in it, but only the component of movement in line-of-sight direction is represented in a differential interferogram. Comfortlessbreen, a recently surging glacier, flows predominantly in this direction with respect to the European Remote Sensing satellites ERS-1 and ERS-2. Four C-band SAR scenes from spring 1996 were selected because of the high coherence between the respective pairs of the 1-day repeat-pass tandem mission of the ERS sensors. 2-pass DInSAR is performed in combination with a SPOT5 (Satéllite pour l'Observation de la Terre 5) SPIRIT (SPOT5 stereoscopic survey of Polar Ice: Reference Images and Topography) digital elevation model (DEM) from 2007. The different processing steps and intermediate image products, including unwrapping and generation of displacement maps, are detailed in order to convey the DInSAR processing chain to the beginner in the field of interferometry. Maximum horizontal displacements of 18 to 20 cm d−1 in ground range direction can be detected at the glacier terminus, while a few centimetres per day characterised most of the middle and upper portions of Comfortlessbreen in spring 1996.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

K. Eldhuset , P.H. Andersen , S. Hauge , E. Isaksson , and D.J. Weydahl . 2003. ERS tandem InSAR processing for DEM generation, glacier motion estimation and coherence analysis on Svalbard. International Journal of Remote Sensing 24 (7): 14151437.

A.K. Gabriel , R.M. Goldstein , and H.A. Zebker . 1989. Mapping small elevation changes over large areas: differential radar interferometry. Journal of Geophysical Research 94 (B7): 91839191.

R. Gens , and J.L. van Genderen . 1996. SAR interferometry – issues, techniques, applications.International Journal of Remote Sensing 17 (10): 18031835.

R.M. Goldstein , H.A. Zebker , and C.L. Werner . 1988. Satellite radar interferometry: two–dimensional phase unwrapping. Radio Science 23 (4): 713720.

R.M. Goldstein , R. Engelhard , B. Kamb , and R. Frolich . 1993. Satellite radar interferometry for monitoring ice sheet motion: application to an Antarctic ice stream. Science 262: 15251530.

R.F. Hanssen 2001. Radar interferometry: data interpretation and error analysis. Remote sensing and digital image processing. Dordrecht: Kluwer.

I. Joughin , S. Tulaczyk , M.A. Fahnestock , and R. Kwok . 1996. A mini–surge on the Ryder Glacier, Greenland, observed by satellite radar interferometry. Science 274: 228230.

J. Korona , E. Berthier , M. Bernard , F. Remy , and E. Thouvenot . 2009. SPIRIT. SPOT 5 stereoscopic survey of polar ice: reference images and topographies during the fourth International Polar Year (2007–2009). ISPRS Journal of Photogrammetry and Remote Sensing 64: 204212.

R. Kwok , and M.A. Fahnestock . 1996. Ice sheet motion and topography from radar interferometry. IEEE Transactions on Geoscience and Remote Sensing 34 (1): 189200.

M.F. Meier , and A. Post . 1969. What are glacier surges? Canadian Journal of Earth Sciences 6 (4): 807817.

T. Murray , A. Luckman , T. Strozzi , and A.M. Nuttall . 2003. The initiation of glacier surging at Fridjovbreen. Annals of Glaciology 36: 110116.

H. Pritchard , T. Murray , T. Strozzi , S. Barr , and A. Luckman . 2005. Surge–related topographic change of the glacier Sortebræ, east Greenland, derived from synthetic aperture radar Interferometry. Journal of Glaciology 49 (166): 381390.

P. A. Rosen , S. Hensley , I.R. Joughin , F.K. Li , S.N. Madsen , E. Rodriguez , and R.M. Goldstein . 2000. Synthetic aperture radar interferometry. Proceedings of the IEEE 88 (3): 333382.

H. Rott 2009. Advances in interferometric synthetic aperture radar (InSAR) in earth system science. Progress in Physical Geography 33 (6): 769791.

T. Strozzi , R. Delaloye , A. Kääb , C. Ambrosi , E. Perruchoud , and U. Wegmüller . 2010. Combined observations of rock mass movements using satellite SAR interferometry, differential GPS, airborne digital photogrammetry, and airborne photography interpretation. Journal of Geophysical Research 115: F01014(doi:10.1029/2009JF001311).

M. Sund , and T. Eiken . 2010. Recent surges of Blomstrandbreen, Comfortlessbreen and Nathorstbreen, Svalbard. Journal of Glaciology 56 (195): 182184.

M. Sund , T. Eiken , J.O. Hagen , and A. Kääb . 2009. Svalbard surge dynamics derived from geometric changes. Annals of Glaciology 50 (52): 5060.

A. Vieli , J. Jania , H. Blatter , and M. Funk . 2004. Short–term velocity variations on Hansbreen, a tidewater glacier in Spitsbergen. Journal of Glaciology 50 (170): 389398.

D.J. Weydahl 2001. Analysis of ERS tandem SAR coherence from glaciers, valleys, and fjord ice on Svalbard. IEEE Transactions on Geoscience and Remote Sensing 39 (9): 20292039.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Polar Record
  • ISSN: 0032-2474
  • EISSN: 1475-3057
  • URL: /core/journals/polar-record
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 10
Total number of PDF views: 18 *
Loading metrics...

Abstract views

Total abstract views: 105 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 30th April 2017. This data will be updated every 24 hours.