Skip to main content Accessibility help

Glacier displacement on Comfortlessbreen, Svalbard, using 2-pass differential SAR interferometry (DInSAR) with a digital elevation model

  • Nora Jennifer Schneevoigt (a1), Monica Sund (a1), Wiley Bogren (a1), Andreas Kääb (a1) and Dan Johan Weydahl (a2)...

Differential synthetic aperture radar interferometry (DInSAR) exploits the coherence between the phases of two or more satellite synthetic aperture radar (SAR) scenes taken from the same orbit to separate the phase contributions from topography and movement by subtracting either phase. Hence pure terrain displacement can be derived without residual height information in it, but only the component of movement in line-of-sight direction is represented in a differential interferogram. Comfortlessbreen, a recently surging glacier, flows predominantly in this direction with respect to the European Remote Sensing satellites ERS-1 and ERS-2. Four C-band SAR scenes from spring 1996 were selected because of the high coherence between the respective pairs of the 1-day repeat-pass tandem mission of the ERS sensors. 2-pass DInSAR is performed in combination with a SPOT5 (Satéllite pour l'Observation de la Terre 5) SPIRIT (SPOT5 stereoscopic survey of Polar Ice: Reference Images and Topography) digital elevation model (DEM) from 2007. The different processing steps and intermediate image products, including unwrapping and generation of displacement maps, are detailed in order to convey the DInSAR processing chain to the beginner in the field of interferometry. Maximum horizontal displacements of 18 to 20 cm d−1 in ground range direction can be detected at the glacier terminus, while a few centimetres per day characterised most of the middle and upper portions of Comfortlessbreen in spring 1996.

Hide All
Costantini, M. 1998. A novel phase unwrapping method based on network programming. IEEE Transactions on Geoscience and Remote Sensing 36 (3): 813821.
Crosetto, M., Monserrat, O., Bremmer, C., Hanssen, R., Capes, R., and Marsh, S.. 2008. Ground motion monitoring using SAR interferometry: quality assessment. European Geologist 26: 1215.
Cumming, I., Valero, J.L., Vachon, P.W., Mattar, K., Geudtner, D., and Gray, L.. 1997. Glacier flow measurements with ERS tandem mission data. ESA Fringe 1996 Proceedings, Zurich (ESA SP–406): 353–362.
Dowdeswell, J.A., Hamilton, G.S., and Hagen, J.O.. 1991. The duration of the active phase on surge–type glaciers: contrasts between Svalbard and other regions. Journal of Glaciology 37 (127): 388400.
Eldhuset, K., Andersen, P.H., Hauge, S., Isaksson, E., and Weydahl, D.J.. 2003. ERS tandem InSAR processing for DEM generation, glacier motion estimation and coherence analysis on Svalbard. International Journal of Remote Sensing 24 (7): 14151437.
Gabriel, A.K., Goldstein, R.M., and Zebker, H.A.. 1989. Mapping small elevation changes over large areas: differential radar interferometry. Journal of Geophysical Research 94 (B7): 91839191.
Gens, R., and van Genderen, J.L.. 1996. SAR interferometry – issues, techniques, applications.International Journal of Remote Sensing 17 (10): 18031835.
Goldstein, R.M., Zebker, H.A., and Werner, C.L.. 1988. Satellite radar interferometry: two–dimensional phase unwrapping. Radio Science 23 (4): 713720.
Goldstein, R.M., Engelhard, R., Kamb, B., and Frolich, R.. 1993. Satellite radar interferometry for monitoring ice sheet motion: application to an Antarctic ice stream. Science 262: 15251530.
Hagen, J.O., Liestøl, O., Roland, E., and Jørgensen, T.. 1993. Glacier atlas of Svalbard and Jan Mayen. Oslo: Norwegian Polar Institute (Meddelelser 129).
Hanssen, R.F. 2001. Radar interferometry: data interpretation and error analysis. Remote sensing and digital image processing. Dordrecht: Kluwer.
Joughin, I., Tulaczyk, S., Fahnestock, M.A., and Kwok, R.. 1996. A mini–surge on the Ryder Glacier, Greenland, observed by satellite radar interferometry. Science 274: 228230.
Korona, J., Berthier, E., Bernard, M., Remy, F., and Thouvenot, E.. 2009. SPIRIT. SPOT 5 stereoscopic survey of polar ice: reference images and topographies during the fourth International Polar Year (2007–2009). ISPRS Journal of Photogrammetry and Remote Sensing 64: 204212.
Kwok, R., and Fahnestock, M.A.. 1996. Ice sheet motion and topography from radar interferometry. IEEE Transactions on Geoscience and Remote Sensing 34 (1): 189200.
Meier, M.F., and Post, A.. 1969. What are glacier surges? Canadian Journal of Earth Sciences 6 (4): 807817.
Melvold, K., and Hagen, J.O.. 1998. Evolution of a surge–type glacier in its quiescent phase: Kongsvegen, Spitsbergen, 1964–95. Journal of Glaciology 44 (147): 394404.
Moholdt, G. 2010. Elevation change and mass balance of Svalbard glaciers from geodetic data. Unpublished PhD dissertation. Oslo: University of Oslo, Department of Geosciences.
Murray, T., Luckman, A., Strozzi, T., and Nuttall, A.M.. 2003. The initiation of glacier surging at Fridjovbreen. Annals of Glaciology 36: 110116.
Nuttall, A.M., Hagen, J.O., and Dowdeswell, J.. 1997. Quiescent–phase changes in velocity and geometry of Finsterwalderbreen, a surge–type glacier in Svalbard. Annals of Glaciology 24: 249254.
Pritchard, H., Murray, T., Strozzi, T., Barr, S., and Luckman, A.. 2005. Surge–related topographic change of the glacier Sortebræ, east Greenland, derived from synthetic aperture radar Interferometry. Journal of Glaciology 49 (166): 381390.
Rosen, P. A., Hensley, S., Joughin, I.R., Li, F.K., Madsen, S.N., Rodriguez, E., and Goldstein, R.M.. 2000. Synthetic aperture radar interferometry. Proceedings of the IEEE 88 (3): 333382.
Rott, H. 2009. Advances in interferometric synthetic aperture radar (InSAR) in earth system science. Progress in Physical Geography 33 (6): 769791.
Strozzi, T., Delaloye, R., Kääb, A., Ambrosi, C., Perruchoud, E., and Wegmüller, U.. 2010. Combined observations of rock mass movements using satellite SAR interferometry, differential GPS, airborne digital photogrammetry, and airborne photography interpretation. Journal of Geophysical Research 115: F01014(doi:10.1029/2009JF001311).
Sund, M., and Eiken, T.. 2010. Recent surges of Blomstrandbreen, Comfortlessbreen and Nathorstbreen, Svalbard. Journal of Glaciology 56 (195): 182184.
Sund, M., Eiken, T., Hagen, J.O., and Kääb, A.. 2009. Svalbard surge dynamics derived from geometric changes. Annals of Glaciology 50 (52): 5060.
Vieli, A., Jania, J., Blatter, H., and Funk, M.. 2004. Short–term velocity variations on Hansbreen, a tidewater glacier in Spitsbergen. Journal of Glaciology 50 (170): 389398.
Wangensteen, B., Weydahl, D.J., and Hagen, J.O.. 2005. Mapping glacier velocities on Svalbard using ERS tandem DInSAR data. Norwegian Journal of Geography 59: 276285.
Wegmüller, U., and Werner, C.. 1997. Gamma SAR processor and interferometry software. Florence: ERS (Third ERS symposium on space at the service of our environment, Florence, Italy): 1687–1692.
Weydahl, D.J. 2001. Analysis of ERS tandem SAR coherence from glaciers, valleys, and fjord ice on Svalbard. IEEE Transactions on Geoscience and Remote Sensing 39 (9): 20292039.
Weydahl, D.J., Eldhuset, K., and Hauge, S.. 2001. Atmospheric effects on advanced modes. Kjeller: Norwegian Defence Research Establishment (report 2001/04826).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Polar Record
  • ISSN: 0032-2474
  • EISSN: 1475-3057
  • URL: /core/journals/polar-record
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed